Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The GNEP Mirage

But GNEP may be a mirage. For one thing, the sponsors have hardly any idea what it would cost; the $250 million proposed by the Bush administration is for a program that hopes to figure that out. GNEP backers say their technology will expand the supply of nuclear fuel enough to slash carbon emissions virtually forever and allow us to avoid the specter of choosing between global warming and very high-priced energy. It would appear, however, that saving money on nuclear fuel may be practical only if price is no object.

Richard L. Garwin, an IBM fellow emeritus and the coauthor of seven books on nuclear weapons and nuclear power, estimates that existing reprocessing plants like the one operating in France supply reactors with plutonium at a price of approximately $1,000 per kilogram of uranium saved. But the market price of uranium, he points out, is around $100 per kilogram, and it might be at a temporary peak.

Fuel is only part of the cost of nuclear power, and Finck says reprocessing fuel and reusing it in fast reactors would add only about 10 percent to overall power costs. But where even that modest increment would come from is not clear. Frank N. von Hippel, a physicist and policy expert at Princeton University’s Woodrow Wilson School of Public and International Affairs, notes that the United States set out to build a fast reactor in the 1970s but dropped the effort in 1983 after France, Germany, and the United Kingdom built them and then abandoned them as too costly and difficult. And once the fast reactors were built, the system envisioned by GNEP might require as many as one of the expensive new reactors for every three ordinary ones, according to sponsors, depending on how effective the new reactors were. Garwin says of the fast reactors, “There is no conception of these things making their way economically.”

“I hope that we’ll have more reactors; I certainly hope the world will have more,” Garwin says, referring to the types that are operating commercially today. “But that will only happen if it looks economically profitable for private industry to get into this area.” And right now a lot of smart money – some of it channeled through the Energy Department – is going not only into that conventional nuclear power but also into other carbon-free energy sources, such as wind, solar, and coal with carbon dioxide sequestration.

EPRI recently analyzed the prices of zero-carbon electricity sources and found that if, as manufacturers claim, new reactors could be built for $1,700 per kilowatt of capacity (less than the cost in the 1980s, even before adjusting for inflation), they would produce electricity at about $49 per megawatt-hour. Although that’s about two-thirds the price of biomass, and half the price of wind, other technologies on the drawing board may do the job for very little more. For about $55 per megawatt-hour, EPRI found, coal could be gasified and burned, and the carbon dioxide sequestered. Power plants running on gasified coal have not been commercialized yet, but conventional pulverized-coal plants could be built that would sequester their carbon dioxide, and they would produce power at about $65 per megawatt-hour. Those technologies are perceived by investors as lower risk, and the United States has hundreds of years’ worth of coal.

In a few years, or a few decades, carbon taxes could be universal in the industrial world, a war in the Persian Gulf could make the price of oil double or triple, and electricity demand could surge – particularly if somebody came up with a better battery that could be mass-produced for electric cars. But even if all those things pushed the world toward zero-carbon energy, we would still be looking for the zero-carbon energy that cost least. That could be nuclear energy, according to EPRI. But Steve Specker, the president of EPRI, expects a “horse race” between different zero-carbon coal technologies.

30 comments. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »