Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

There is reason for guarded optimism. The Statoil project and the Dakota gasification plant have already stored 20 million tons of carbon dioxide each; a gas field in Algeria has stored 17 million tons; a project in the Netherlands, eight million. The U.N.’s Intergovernmental Panel on Climate Change estimates – based on experience and on models – that properly engineered systems could retain 99 percent of their carbon dioxide over 100 years and would “likely” do so over 1,000 years. AEP’s Powers, too, seems confident. “If you look at the science, it suggests that our footprint in the U.S. is blessed with the right geologic formations to sequester hundreds of years’ worth of CO2 emissions,” he says. “I’m not trying to trivialize the public-policy aspect of this, but you get a picture painted that the geology is there.”

What carbon dioxide we can’t sequester, or sell to oil companies hoping to use it to force out more oil, we could use to produce alternative fuels. Specifically, it could help make methanol, which could be a more practical fuel than hydrogen. Hydrogen is merely an energy carrier; energy is required to create it in the first place, either by splitting water molecules with electricity or by extracting it from fossil fuels. To make the transition to a “hydrogen economy,” not only would you need to produce the hydrogen, but you’d also need an entirely new infrastructure for delivering and storing it, plus vast improvements in fuel cell technology to make it useful.

But if you took hydrogen and combined it with carbon dioxide (which would be, admittedly, another energy-consuming step), you could produce methanol, essentially creating a liquid energy carrier. Unlike hydrogen, methanol could be transported using today’s infrastructure and burned in slightly modified versions of today’s vehicles. “The president says nice things about moving from a carbon-based economy to a new one. I think it’s said easily, but it’s not so easily done,” says George Olah, a Nobel laureate in chemistry and director of the Loker Hydrocarbon Research Institute at the University of Southern California. Olah is an active proponent of the “methanol economy”: “What I’m saying is that we have the basis of carbon dioxide that can be recycled,” he says.

25 comments. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me