Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Church says his DNA synthesizer could make vaccine and pharmaceutical production vastly more efficient. But it could also enable the manufacture of the genomes of all the viruses on the U.S. government’s “select agents” list of bioweapons. Church fears that starting with only the constituent chemical reagents and the DNA sequence of one of the select agents, someone with sufficient knowledge might construct a lethal virus. The smallpox virus variola, for instance, is approximately 186,000 bases long – just 13 smaller DNA molecules to be synthesized with Church’s technology and bound together into one viral genome. To generate infectious particles, the synthetic variola would then need to be “booted” into operation in a host cell. None of this is trivial; nevertheless, with the requisite knowledge, it could be done.

I suggested to Church that someone with the requisite knowledge might not need his cutting-edge technology to do harm. A secondhand machine could be purchased from a website like eBay or for around $5,000. Alternatively, the components – mostly off-the-shelf electronics and plumbing – could be assembled with a little more effort for a similar cost. Construction of a DNA synthesizer in this fashion would be undetectable by intelligence agencies.

The older-generation machine would construct only oligonucleotides, which would then have to be stitched together to function as a complete gene, so only small genes could be synthesized. But small genes can be used to kill people.

“People have trouble maintaining the necessary ultrapure approach even with commercial devices – but you definitely could do some things,” Church acknowledged.

What things? Again, Serguei Popov’s experience at Biopreparat is instructive. In 1981, Popov was ordered by Lev Sandakhchiev, Vector’s chief, to synthesize fragments of smallpox. “I was against this project,” Popov told me. “I thought it was an extremely blunt, stupid approach.” It amounted to a pointlessly difficult stunt, he explained, to impress the Soviet military; when his researchers acquired real smallpox samples in 1983, the program was suspended.

A closely related program that Popov had started, however, continued after he departed Vector for Biopreparat’s Oblensk facility in the mid-1980s. This project used the poxvirus vaccinia, the relatively harmless relative of variola used as a vaccine against smallpox. Not only was vaccinia – whose genome is very similar to variola’s – a convenient experimental stand-in for smallpox, but its giant size (by viral standards) also made it a congenial candidate to carry extra genes. In short, it was a useful model for bioweapons.

For at least a decade, therefore, a team of Biopreparat scientists systematically inserted into vaccinia a variety of genes that coded for certain toxins and for peptides that act as signaling mechanisms in the immune system. Though Popov had directed that the recombinant-vaccinia program should proceed through the genes coding for immune system-modulating peptides, he left before the researchers finished with the interleukin genes. But it would be surprising if the Vector researchers did not reach the gene for interleukin-4 (IL-4), an immune-system peptide that coaxes white blood cells to increase their production of antibodies and then releases them.

12 comments. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me