Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Even those who are intimately involved with biodefense often support this view. For an insider’s perspective, I contacted Jens Kuhn, the Harvard Medical School virologist. The German-born Kuhn has worked not only at Usamriid, and at the Centers for Disease Control in Atlanta, but also – uniquely for a Westerner – at Vector.

Kuhn, like Ebright, is no fan of how the biodefense boom is unfolding. “When I was at Usamriid, it exemplified how a biodefense facility should be,” he told me. “That’s why I’m worried – because the system worked, and the experts were concentrated at the right places, Fort Detrick and the CDC. Now this expertise gets diluted, which isn’t smart.”

Kuhn believes, nevertheless, that some kind of national biodefense program is needed. He just doesn’t think we are preparing for the right things. “Everybody makes this connection with bioterrorism, anthrax attacks, and al-Qaeda. That’s completely wrong.” Kuhn recalled his time at Vector and that facility’s grand scale. “When you look at what the Russians did, those kinds of huge state programs with billions of dollars flowing into very sophisticated research carried on over decades – they’re the problem. If nation-states start a Manhattan Project to build the perfect biological weapon, we’re in deep shit.”

But doesn’t modern biotechnology, I asked, allow small groups to do unprecedented things in garage laboratories?

Kuhn conceded, “There are a few things out there” with the potential to kill people. But weighing the probabilities, he saw the threat in these terms: “Definitely more biowarfare than bioterrorism. Definitely more the sophisticated bioweapons coming in the future than the stuff now. There’s danger coming towards us and we’re focusing on concerns like BioShield. I don’t think that’s the stuff that will save us.”

Is Help on the Way?
The 21st century will see a biological revolution analogous to the industrial revolution of the 19th. But both its benefits and its threats will be more profound and more disruptive.

The near-term threat is that genes could be hacked outside of large laboratories. This means that terrorists could create recombinant biological weapons. But the leading edge of bioweapon research has always been the work of government labs. The longer-term threat is what it always has been: national militaries. Biotechnology will furnish them with weapons of unprecedented power and specificity. George Poste, in his 2003 speech to the National Academies, warned his audience that in coming decades the life sciences would loom ever larger in national-security matters and international affairs. Poste noted, “If you actually look at the history of the assimilation of technological advance into the calculus of military affairs, you cannot find a historical precedent in which dramatic new technologies that redress military inferiority are not deployed.”

Harvard’s Matthew Meselson has said the same and added that a world in which the new biotechnology was deployed militarily “would be a world in which the very nature of conflict had radically changed. Therein could lie unprecedented opportunities for violence, coercion, repression, or subjugation.” Meselson adds, “Governments might have the objective of controlling very large numbers of people. If you have a situation of permanent conflict, people begin contemplating things that the ordinary rules of conflict don’t allow. They begin to view the enemy as subhuman. Eventually, this leads to viewing people in your own culture as tools.”

What measures could mitigate both the near and the more distant threats of bioweaponry? BioShield, as it is now constituted, will not protect us from genetically engineered pathogens. A number of radical solutions (like somehow boosting the human immune system through generic immunomodifiers) have been proposed, but even if pursued, they might take years or decades to develop.

14 comments. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me