Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Trey Ideker, 33
University of California, San Diego
Defining and advancing systems biology

As a graduate student, Trey Ideker published a paper that helped define the discipline of systems biology. His research goals today reflect those of the entire field: to integrate the myriad data that researchers can collect about a cell into coherent computer models. As an assistant professor of bioengineering, Ideker is not only improving these models but employing them in biological discovery. For instance, he is looking for protein networks uniquely present in pathogenic organisms; these could make good drug targets. He hopes that, ultimately, systems-derived models will let researchers simulate how potential drugs will affect the body – long before the compounds are tested in humans.

Hang Lu, 28
Georgia Institute of Technology
Designing microfluidic chips to study cells

Hang Lu has a flair for adapting to new environments. At 16, she moved from China to Colorado, where she excelled academically. As a postdoc, she applied her expertise in building bioMEMs – tiny devices that manipulate cells and microorganisms – to devising innovative experiments in neurobiology. Lu has designed minute mazes to test how microscopic worms learn using smell, and she constructed microscale gas gradients to help identify the sensory pathways that the worms use to detect oxygen levels. Now an assistant professor of chemical and biomolecular engineering, Lu hopes her continued worm work will yield clues to the workings of the human brain.

Samuel Madden, 29
MIT
Simplifying wireless sensor nets

Wireless sensor networks enable the remote monitoring of everything from the habitat of an endangered bird species to a building’s response to an earthquake. The problem, says computer scientist Samuel Madden, is that proper programming of the nets’ data-gathering “motes” can require months of expert attention. In 2003, while a graduate student at the University of California, Berkeley, Madden created software called TinyDB that translates high-level queries like “What’s the average temperature in the forest?” into precise instructions. Madden, an assistant professor of computer science, is now installing sensors in cars to monitor operating conditions and figure out faster routes.

Yael Maguire, 30
ThingMagic
Inventing across disciplines

A technological omnivore, Yael Maguire moves fearlessly among fields such as physics, engineering, biology, and software design. As a graduate student at MIT, he designed a sensor that makes the measurement of nuclear magnetic resonance between 10 and 100 times more sensitive but works on samples 1,000 to 10,000 times smaller than those required by current probes. Shuguang Zhang, associate director of MIT’s Center for Biomedical Engineering and Maguire’s thesis advisor, says the sensors will allow researchers to more easily obtain information valuable for designing new drugs.

While a doctoral student at the MIT Media Laboratory, Maguire cofounded ThingMagic, where he is now co-chief technology officer, and pioneered the use of software-defined radio for the radio frequency ID chips that help track retail inventory more quickly and accurately. Maguire’s software allows a single reader to scan and decode hundreds of tags at once, no matter which of the many existing data protocols they use. Maguire also cofounded ThinkCycle, a nonprofit that encourages technologists to collaborate on problems in developing countries.

Melissa Mahoney, 32
University of Colorado at Boulder
Making materials to treat brain damage

Nerve cell transplants offer tremendous promise for patients who are suffering the effects of stroke, or from Parkinson’s disease or other neurodegenerative illnesses. But experiments in rodents showed that about 95 percent of cells transplanted into the brain die before they can help the recipient. Melissa Mahoney is working to develop hydrogel materials that can house the cells, protecting them and supplying them with proteins that encourage their growth. In collaboration with scientists at the University of Colorado at Denver’s Health Sciences Center, Mahoney, an assistant professor of chemical engineering, plans to test these cell-loaded gels in rats within the next year.

Rajit Manohar, 33
Cornell University
Taking the clocks out of computer chips

The different functions of a computer chip are synchronized by an onboard clock, but that means the fastest operations can’t pass on their data until the slowest have finished. Rajit Manohar, an associate professor of electrical and computer engineering, speeds up chips and lowers power consumption by removing the clock; his chips are 10 times more energy efficient than previous clockless chips. Instead of a separate clock network carrying a global timing signal, Manohar’s chips use short wires to carry signals that alert successive operations when the previous operations have finished. Last year, Manohar also built the first low-power processor for sensor networks: “You only activate the part of the chip that’s doing the work you need,” he says. Such sensors could run on the same batteries for years instead of weeks.

Longer profiles:

Daniel Riskin

Jia Chen

Narashima Chari

Alphabetical:

A-B

C

D-H

I-M

P-Z

TR35 Judges

2 comments. Share your thoughts »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me