Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Matthew DeLisa, 32
Cornell University
Delivering more medicine from microbes

Each year, billions of dollars’ worth of drugs, from insulin for diabetics to the stroke drug tPA, are made in huge vats full of microbes engineered to produce human proteins. The process is both inefficient and enormously expensive. Matthew DeLisa, an assistant professor of chemical and biomolecular engineering, was the first scientist to use a twin arginine translocation (Tat) pathway to produce human proteins. This should mean cleaner proteins and longer-lived cultures.

DeLisa is also modifying bacteria to improve each step in protein production. His focus, he says, is “the engineering of biological machines to tackle problems that nature itself can’t do.” Until recently, the biotech industry focused on changing the growth environment for bacteria to boost protein productivity, but DeLisa is supercharging production by going inside the cell itself. For example, he’s replacing key parts of the bacteria’s protein-making machinery with components from higher organisms to produce finely tuned miniature drug factories.

Kevin Eggan, 31
Harvard University
Using cloning to study degenerative diseases

While earning his PhD, Kevin Eggan helped make Rudolf Jaenisch’s lab at the Whitehead Institute for Biomedical Research a preeminent cloning lab. Eggan became “arguably the most skillful mouse cloner in this country,” says Jaenisch. Eggan used those skills to clone mice from neurons, proving that animals could be cloned from even the most specialized cells in the body – a feat that many scientists considered impossible. Eggan also helped explain how cloning “reprograms” the genetic material from an adult mouse cell, identifying the changes that take place to reset the nucleus to the beginning of development.

Eggan, now an assistant professor of molecular and cellular biology, plans to create human stem cell lines from patients with neurodegenerative disorders such as Parkinson’s and Lou Gehrig’s diseases, in order to study disease development and search for new drugs. He has also begun studying nuclear reprogramming in human cells in the hope of finding a way to create patient-specific embryonic stem cells without using human eggs.

Anita Goel, 32
Nanobiosym
Building novel pathogen detectors

Physicist and physician Anita Goel finds inspiration in the tiny: the proteins that inch their way along DNA, reading and copying the genes inside every cell. As a physics graduate student at Harvard University, Goel developed a theory to explain how these molecular motors work. While working on her medical degree at Harvard in 2004, she founded Nanobiosym to apply her theories to the development of nanotech devices for precisely controlling these proteins; such devices could identify viruses and bacteria in, say, a blood sample more rapidly, accurately, and cheaply than current techniques can. Her goal: a low-cost, handheld device for biodefense and biomedical applications.

Saul Griffith, 31
Squid Labs
Following inspiration for inventing

Before Saul Griffith perfected his five-minute method for making custom-crafted lenses for $5, he volunteered in South America, where he once had to hand a pair of dainty granny glasses to a six-foot-tall man: they were the only pair the volunteer group had that fit the man’s prescription, he recalls. And it was from kite-surfing, a sport that relies on the strength of the ropes tethering a surfer to a wind-drawn parachute, that Griffith drew the idea for smart ropes, in which embedded conductive threads reveal developing weaknesses. After pursuing such ideas en route to his doctorate at the MIT Media Lab, he cofounded Squid Labs to explore the business of inventing. Among his projects: “open source hardware,” to do for computer equipment what Linux did for operating systems.

Paul Hergenrother, 33
University of Illinois at Urbana-Champaign
Discovering drugs that defy convention

Paul Hergenrother is a chemist who takes on huge, unsolved medical problems: antibiotic resistance, cancer, and neurodegenerative disease. His small-molecule compounds bind tightly to unconventional disease-related targets, deactivating them. For example, Hergenrother found compounds that eliminate plasmids, the DNA rings that deadly bacteria use to spread antibiotic resistance. That pioneering project led him to a general method for finding drugs that target a particular type of RNA – messenger RNA – as a way to silence disease-causing genes, something standard drugs can’t do. Hergenrother’s “ten-year vision” could lead to treatments for Alzheimer’s and Parkinson’s.

Katrine Hilmen, 34
ABB Corporate Research
Getting the most out of oil rigs

Katrine Hilmen is helping to keep dwindling North Sea oil fields productive. The chemical engineer at ABB’s research center in Norway developed innovative online monitoring and management tools for oil production platforms. Her technology monitors parameters such as heat, vibration, pressure, and flow rates, and can quickly identify a problem and its cause. The typical benefits: a 3 to 8 percent increase in oil production, a 10 to 15 percent reduction in operating expenses, and less pollution. Her innovations in process optimization, which have led to four patent filings, are widely studied by others in the field, enhancing their impact.

Tracey Ho, 29
Caltech
Scrambling bits for a more efficient Internet

Today’s Internet transmissions chop files into packets, each of which is passed from router to router until it reaches its final destination. But when files get big or are sent to many users, transmitting them without clogging the network becomes complicated. With “network coding,” an idea first proposed in 2000, routers would jumble together the bits from different packets, forming new packets. Recombining the data in this way gives the end user additional information, theoretically speeding downloads and increasing network capacity. But early network coding schemes required a godlike central authority that knew how the packets were to be combined – a practical impossibility.

As a PhD student at MIT, Tracey Ho had a novel alternative: let network nodes mix packets together at random, tagging them with just enough information to help end users’ computers recover the original data. This decentralized method automatically optimizes bandwidth use. “It sounds kind of insane,” says Muriel Medard, Ho’s PhD advisor. “But it’s not just that it works; you can’t make it work better.” As an assistant professor of electrical engineering and computer science, Ho still studies network coding. But only months after she first presented her “distributed random network coding” scheme, Microsoft researchers showed that it can clearly outperform today’s multicast systems. The company has embarked on a project called Avalanche to commercialize the scheme.

Longer profiles:

Daniel Riskin

Jia Chen

Narashima Chari

Alphabetical:

A-B

C

D-H

I-M

P-Z

TR35 Judges

2 comments. Share your thoughts »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me