Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Patent Problems
From the beginning, Lensch was sure that Bush’s cell lines would not be enough. To begin with, many of them were probably abnormal. The genetic information in eggs and sperm is so often fraught with random errors and mismatches that the resulting embryos are frequently not viable. Embryos from IVF clinics are no exception, so researchers cannot assume that the stem cell lines derived from them are genetically normal.

But even when lines are normal, they degrade over time. Creating enough stem cells for a single lab’s experiments – let alone for distribution to other labs – requires coaxing the cells to divide over and over. Across many generations, the cells accumulate random genetic mistakes. In consequence, Lensch says, “you always need new supplies of cell lines. There’s no escaping it.”

At the time Lensch came to Massachusetts, the National Institutes of Health was compiling a list of stem cell lines created before the president’s speech, all of which were approved for federally funded research. Wanting to work with as many as possible, Lensch and his coworkers contacted stem cell researchers everywhere from San Francisco to Stockholm to Melbourne, asking to borrow samples in the sort of free exchange that has long characterized scientific research.

To Lensch’s dismay, he says, “there were lots of closed doors, lots of nos, lots of no-answers.” Driven by greed (the huge potential commercial impact of embryonic stem cells) and fear (the huge potential for liability), laboratories around the world refused to share data and expertise. A colleague forwarded to Lensch an e-mail from a Swedish scientist who flatly explained that his group was not letting other Swedes work with its stem cell lines, or even conducting experiments with them itself at the time.

An Australian group was willing to make its stem cells available, Lensch says, “but it was during the foot-and-mouth outbreak there.” To export the cells to the U.S., the Australians “had to provide documentation that they were free of agriculturally important infections. And of course nobody in Australia had tested the lines for foot-and-mouth disease,” he says. Six months after joining his new lab, Lensch had only a single line, from Thomson’s collaborator, Joseph Itskovitz-Eldor of the Technion-Israel Institute of Technology, in Haifa.

All the while, he was negotiating for two lines with the University of California, San Francisco (UCSF), another Geron-funded lab. In the past, Lensch says, a researcher who borrowed materials developed by a second researcher usually came back after making an interesting discovery to offer coauthorship of the resulting paper, thus spreading around the glory. As universities have become more intent on exploiting their intellectual property financially, they have begun asking borrowers to sign formal “materials transfer agreements” that spell out what can be done with borrowed materials.

Usually the agreements authorize specific researchers to work with the materials, describe what the materials can be used for, and list the circumstances under which the materials’ creators must be given credit in publications. The UCSF agreement, in Lensch’s view, went further. “To begin with, they could stop your research at any time,” he says. “And whatever I could make with [the two stem cell lines], they would continue to own. In effect, I became an employee of UCSF.”

Lensch eventually obtained both cell lines from UCSF in September 2002. But Harvard University, which is affiliated with Children’s Hospital Boston, is still negotiating licensing terms with WARF, whose stem cell patents cover a wide range of applications. According to Patrick Taylor, chief counsel for research affairs at Children’s Hospital, WARF is protecting its intellectual property with an “unfortunate perseverance” that, in a kind of negative synergy, has coupled with the Bush regulations to impede stem cell research.

WARF’s Cohn denies that the foundation has created hurdles. “Our goal is to distribute the cells as quickly and painlessly as possible for both researchers and us,” he says, noting that some 250 research teams now use WARF lines. “We don’t make money doing this. In fact, we lose money doing this – $1.3 million so far. It’s part of our commitment to moving the science forward.”

But because WARF holds patents so fundamental to stem cell research, Taylor says, it effectively controls much of the field. WARF obtained such rights, Taylor argues, only because the “federal abdication of funding” meant that it had anomalously few rivals. And while the government demands that the researchers it backs minimally restrict their colleagues, most private organizations don’t. So privatizing every aspect of this fundamental new research will lead to “a thicket of conflicting patents” that will make it “extremely difficult to do any research.”

Exemplifying Taylor’s worries are the hundreds of patents, patent filings, and exclusive licenses with which Geron has further locked up prime intellectual property. The company might provoke less complaint if it were a pharmaceutical giant like Merck or Pfizer that can support researchers around the world. But Geron has spent only $90 million on stem cell research since 1995. As Geron’s Greenwood admits, the company can support only a handful of labs, which have free access to its intellectual property. Everyone else is out in the cold.

The result, in Taylor’s view, is a classic instance of the law of unintended consequences: because the federal government won’t support most stem cell research, the work must be sponsored by private industry. But no corporation will support research that it can’t benefit from. The same regulations that open the door for private industry also effectively shut it.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me