Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

When American Airlines Flight 11 flew at low altitude down the Hudson River valley on the morning of Sept. 11, 2001, its target was the north tower of the World Trade Center. But its impact is still being felt at a cluster of buildings it passed about five minutes before it reached lower Manhattan, at a nuclear-reactor complex called Indian Point in Buchanan, NY. Adjacent to the site’s two operating reactors are two buildings packed with highly radioactive spent-fuel rods, in pools of water 12 meters deep and tinged Ty-D-Bol blue by boron added to tamp down nuclear chain reactions. The soothing hum of the pumps that circulate the building’s warm, moist air – and, critically, keep the water cool – lends an atmosphere of industrial tranquility.

Without that cooling water, the fuel cladding might overheat, melt, catch fire, and release radiation. Whether the impact of a Boeing 767 like Flight 11 could drain one of the pools and disable backup water pumps, starting such a fire, is far from clear. Nevertheless, the threat of terrorism in general and the flyover of Flight 11 in particular have reignited the debate about why all of this dangerous fuel is still here – indeed, why all spent fuel produced at Indian Point in three decades is still here – and not at Yucca Mountain, the federal government’s burial spot near Las Vegas, where it was supposed to be shipped beginning six years ago.

Late this past summer, a construction project began at Indian Point that will allow the fuel to be pulled out of the pools. But it’s not going to Yucca. The government says Yucca won’t be ready until 2010. Executives in the nuclear industry say a more likely date is between 2015 and never. So instead of traveling to Nevada, Indian Point’s fuel is traveling about 100 meters, to a bluff overlooking the Hudson River. On a late-summer day this year, a backhoe tore out maple and black-walnut trees to make way for a concrete pad. Beginning next year, the first of a planned 72 six-meter-tall concrete-and-steel casks will be placed there, a configuration that adds storage capacity and thus allows the twin power plants to keep operating. Though they provide a hedge against a worst-case fuel-pool meltdown, these casks are merely another temporary solution. The fact that they’re needed at all represents the colossal failure of the U.S. Department of Energy’s Yucca plans and technology.

Yet as engineering and policy failures go, this one has a silver lining. Conventional thinking holds that Yucca’s problems must be solved quickly so that nuclear waste can be squirreled away safely and permanently, deep within a remote mountain. But here’s the twist: with nuclear waste, procrastination may actually pay. The construction of cask fields presents a chance to rethink the conventional. The passage of several decades while the waste sits in casks could be immensely helpful. A century would give the United States time to observe progress on waste storage in other countries. In the meantime, natural radioactive decay would make the waste cooler and thus easier to deal with. What’s more, technological advances over the next century might yield better long-term storage methods. “If it goes on for another 50 years, it doesn’t matter. It could go on for 100 or 200 years, and it’s probably for the better,” says Allison Macfarlane, a geologist at MIT and coeditor of a forthcoming book on Yucca. “We’ve got plenty of time to play with it.”

The government must now accept that its Yucca plan is a failure and that casks are the de facto solution. Indian Point’s cask pad will not be the first; about two dozen operating reactors have them already. Others are likely to soon join the list. And some casks – at Rowe, MA, Wiscasset, ME, Charlevoix, MI, and a site near Sacramento, CA – are nuclear orphans, having outlived their reactors. Each cask pad is roughly the size of a football field, floodlit, watched by motion sensors and closed-circuit TV, and surrounded by razor wire and armed guards. Given the homeland-security concern posed by nuclear-waste facilities, and the need to guard them individually, do we really want 60 of them – serving all 125 commercial reactors that have ever operated – to rise around the nation, many near population centers? If casks are the solution for the next generation or two, they should be put in one place.

Yucca is already on tenuous ground; in July a federal appeals court said that to open the mountain burial site, the government would have to show that it could contain waste for hundreds of thousands of years. Extensive scientific analyses by the Energy Department show it cannot. The court’s decision throws the whole question back to the U.S. Congress, which must now decide whether to proceed with Yucca at all. This presents an opportunity to align policy with physics and abandon the Yucca-or-bust dogma that has dominated the debate for nearly 20 years. Casks, centrally located, could make the high-level-waste problem a lot easier to solve and increase national security much sooner, too.

Pages

3 comments. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me