Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Since their inception in the 1980s, biotech drugs based on natural proteins have come to mean the difference between life and death for millions of patients, treating diabetes, cancer, multiple sclerosis, heart attacks, and numerous genetic diseases. They boost the quality of life of millions more, people with conditions such as rheumatoid arthritis and Parkinson’s disease. But such “large molecule” drugs also come with large price tags. Interferon beta, used to treat multiple sclerosis, runs $10,000 to $14,000 a year. Cancer treatments such as Herceptin can cost $20,000 to $30,000. And the prices of drugs for some rare diseases can top $200,000 annually. “People need these drugs for their survival,” says Abbey Meyers, founder and president of the National Organization for Rare Disorders. “If they can’t afford it, they’re dead.”

Patents on the first biotech drugs began expiring three years ago (see “Some Would-Be Biogenerics), but the less-expensive generic versions that typically appear as soon as a drug loses patent protection have yet to hit the U.S. market. If you believe the arguments of pioneering biotech companies like Genentech and Amgen, the problem is the complexity of protein-based drugs – or “biologics” – which makes their duplication extraordinarily difficult. Without exact duplication, generics producers risk introducing drugs that may not work or could even harm patients. “Anything can be reverse-engineered and copied,” Robert Garnick, Genentech’s senior vice president for regulatory affairs, quality, and compliance, told a U.S. Food and Drug Administration panel in September. “However, some things are much safer [to copy] than others.”

But the fact is that several companies already sell generic versions of protein drugs in, for example, China and Latin America. The European Union is likely next. Such “biogenerics” don’t exist in the United States mainly because there is no mechanism for their approval and sale. The FDA has repeatedly delayed promised guidance on what sort of testing biogenerics will need to undergo to obtain approval; even if it does deliver guidelines, it might not have the legal authority to approve generic versions of many biotech drugs. And the biotech industry, of course, has already begun lobbying against biogenerics.

But their time may nonetheless be ripe. As costs for biologic drugs rise, and the number of expired patents grows, patient groups, health-care payers, and generics manufacturers are pressing for change. Few patients can actually afford biologics, and even when insurers cover their costs, the drugs constitute an insupportable and growing burden on the health-care system. Medicare, for instance, spends an estimated $1 billion per year for erythropoietin, a protein used to treat anemia in cancer and kidney failure patients. Kaiser Permanente, the largest HMO in the United States, saw its expenditure on biologics more than triple between 1998 and 2003 and expects that figure to double again by the end of 2005.

This situation, in which some patients’ only hope is a ruinously expensive patented drug, was also characteristic of traditional “small molecule” drugs until the advent of conventional generics – and it helped earn the pharmaceutical industry a reputation for greed. “The biotech industry, by and large, has been spared the negative public image that the pharmaceutical companies have acquired,” says MIT economist Ernst Berndt. “The whole issue of generic entry is putting them in a very uncomfortable position that makes them look like big pharma.”

A growing number of traditional generics makers and upstart biotech companies hope to paint exactly that picture of biotech pioneers. New technologies, they say, allow them to prove that their much cheaper copies of drugs are identical to the originals – and just as safe and effective. Legislators and regulators are taking notice. In June, the U.S. Senate Judiciary Committee held hearings on the issue, and the FDA began a series of workshops in September designed to assess the risks inherent in biogenerics and the technologies available to mitigate them. Though the issues are complicated, more and more experts believe that U.S. patients will eventually have access to biogenerics.

Some Would-Be Biogenerics
Drug Condition Treated U.S. Patent expiration
Insulin Diabetes 2001
Human growth hormone Short stature and muscle wasting associated with AIDS 2003
Interferon beta-1a Multiple sclerosis 2003
Erythropoietin Anemia associated with kidney dialysis or cancer treatment 2004
Alteplase Heart attack, stroke, blood clots in the lungs, and other conditions involving blood clots
Filgrastim Low white-blood-cell count and risk of infection associated with cancer treatment 2006

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me