Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Information is Armor

Military intellectuals call them “revolutions in military affairs.” Every few decades, a new technology or a new “doctrine,” to use the military jargon, changes the nature of war. Single technologies, like gunpowder or nuclear weapons, spur some of these revolutions. New doctrines, like Napoleonic staff organization or Nazi blitz tactics, drive others. And some are the result of many simultaneous advances, like the airplanes, chemical weapons, and machine guns of World War I – which achieved new rates of slaughter.

The newest revolution is known to Pentagon planners as “force transformation.” The idea is that robotic planes and ground vehicles, empowered by an ever expanding range of sensing, targeting, imaging, and communications capabilities (new technologies), would support teams of networked soldiers (a new doctrine). According to its most expansive definition, force transformation is intended to solve the problem of “asymmetric warfare” in the 21st century, where U.S. forces are not directly confronted by conventional militaries but rather must quell insurgencies, destroy terrorist cells, or mitigate regional instability. Among other things, more nimble, networked forces could employ tactics like “swarming” – precise, coordinated strikes from many directions at once.

The technologies driving force transformation are incredibly complicated. It will take at least 31 million lines of computer code to run something called Future Combat Systems, the centerpiece of the Pentagon’s transformation effort. An army-run program expected to cost more than $100 billion, it consists of a suite of new manned and unmanned machines, all loaded with the latest sensors, roaming the air and ground. Software will process sensor data, identify friend and foe, set targets, issue alerts, coordinate actions, and guide decisions. New kinds of wireless communications devices – controlled by yet more software and relaying communications via satellites – will allow seamless links between units. Currently, 23 partner companies, many with their own platoons of subcontractors, are building the systems; Boeing of Chicago and Science Applications International of San Diego are charged with tying them all together and crafting a “system of systems” by 2014.

In this grand vision, information isn’t merely power. It’s armor, too. Tanks weighing 64 metric tons could be largely phased out, giving way to lightly armored vehicles – at first, the new 17-metric-ton Stryker troop carrier – that can avoid heavy enemy fire if need be. These lighter vehicles could ride to war inside cargo planes; today, transporting large numbers of the heaviest tanks requires weeks of transport via land and sea. “The basic notion behind military transformation is that information technologies allow you to substitute information for mass. If you buy into that, the whole force structure changes,” says Stuart Johnson, a research professor at the Center for Technology and National Security Policy at National Defense University in Washington, DC. “But the vision of all this is totally dependent on information technologies and the network. If that part of the equation breaks down, what you have are small, less capable battle platforms that are more vulnerable.”

The Iraq War represented something of a midpoint – and an early proving ground – in the move toward this networked force. The U.S. offensive did include the old heavy armor, and it didn’t sport all the techno-goodies envisioned by the promoters of force transformation. But it did presume that satellite- and aircraft-mounted sensors would support the fighting units on the ground. The war’s backbone was a land invasion from Kuwait. Ultimately, some 10,000 vehicles and 300,000 coalition troops rumbled across the sandy berm at the Kuwaiti border, 500 kilometers from Baghdad. Desert highways crawled with columns of Abrams tanks, Bradley fighting vehicles, armored personnel carriers, tank haulers, Humvees, and of course, fuel tankers to slake the fleet’s nine-million-liter daily demand for fuel.

Several communications links were designed to connect these vehicles with each other and with commanders. First, and most successfully, at least 2,500 vehicles were tracked via Blue Force Tracker: each vehicle broadcast its Global Positioning System coordinates and an ID code. This thin but critical stream of data was in essence a military version of OnStar. Commanders in Qatar saw its content displayed on a large plasma screen. Marcone, like some other commanders in the field, also had access to it, thanks to a last-minute installation in his tank before the invasion.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »