Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In the Samsung Advanced Institute of Technology, south of Seoul, South Korea, what looks from a distance like an ordinary 38-inch television plays an endless loop of commercials for James Bond movies. Like the displays increasingly common in American homes, it is a big, flat rectangle of color and motion in a high-tech plastic frame. But unlike the images on an ordinary TV, the ones on this lab model are generated by a layer of carbon nanotubes shooting electrons at a phosphor screen like so many tiny cannonballs. Around the world, television screens are emblems of stodgy domesticity. But this one is in the vanguard of tomorrow’s nanotechnological revolution: it could be the first commercial product that brings nanoscale electronics into the middle-class home.

Researchers around the world are racing to perfect this novel type of display, which should be brighter, sharper, and less power-hungry than current flat-panel TVs. For the moment, though, the Samsung institute appears to have the lead. “They are the ones to beat,” says Yahachi Saito, lead researcher of a rival group at Nagoya University in Japan. “They have moved very quickly.”

Samsung, and South Korean technology firms in general, are rarely thought of as the leading developers of hot new technologies. This is a stereotype, however, that the company is determined to change. “We are still identified, correctly, with low-cost manufacturing,” says Young Joon Gil, chief technology officer at the Samsung institute. But as competitors emerge from China and other east-Asian countries, he says, Samsung “must gradually move to high-profit, high-risk innovation to survive.”

Nanotechnology is the most important of the risky disciplines the company hopes to mine for new products, and the nanotube TV screens are its first fruits. Known as “field emission displays,” they should be in stores, Young says, by the end of 2006, comfortably ahead of the competition.

Meeting that prediction will not be easy. Simply taking field emission displays from the laboratory to the retail floor will require solving a host of tough technical problems. Moreover, current flat-panel displays, based on liquid-crystal and plasma technology, are constantly becoming better and cheaper, meaning nanotech researchers will have to work harder just to keep up. Even success would create its own set of problems, since Samsung – one of the world’s leading manufacturers of liquid-crystal and plasma displays, as well as ordinary cathode-ray-tube TVs – will be competing against itself.

Nanotech displays are thus both a harbinger of a technological revolution to come and an example of how a major electronics company – with lucrative, established markets to protect – is trying to manage and contain that revolution. “We believe we must master this field to grow,” Young says. “But at the same time we cannot let it wreck our company. We have to watch very carefully.”


0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me