Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

On the test benches of Konarka Technologies in Lowell, MA, a new kind of solar cell is being put through its paces. Strips of flexible plastic all but indistinguishable from photographic film bask under high-intensity lights. These strips, about 10 centimeters long and five centimeters wide, are converting the light into electricity. Wire a few of them together, and they generate enough power to run a small fan.

Solar cells, of course, are nothing new. But until now, solar power has required expensive silicon-based panels that have relegated it, largely, to niche applications like satellites and high-end homes. What’s remarkable about Konarka’s power-producing films is that they are cheap and easy to make, using a production line of coating machines and rollers. The process is more akin to the quick-and-dirty workings of a modern printing press than to the arcane rituals performed in the clean rooms of silicon solar-panel manufacturing. The company literally has rolls of the stuff; its engineers plan to cut off usable sheets as if it were saran wrap.

Konarka’s technology is just one example of a new type of printable solar cell, or photovoltaic, that promises to go almost anywhere, paving the way for affordable and ubiquitous solar power. Not only are the cells inexpensive to produce-less than half the cost of conventional panels, for the same amount of power-but they’re also lightweight and flexible, so they can be built into all sorts of surfaces. Flexible films laminated onto laptops and cell phones could provide a steady trickle of electricity, reducing the need to plug in for power. Solar cells mixed into automotive paint could allow the sun to charge the batteries of hybrid cars, reducing their need for fuel. Eventually, such solar cells could even cover buildings, providing power for the electricity grid.

Pages

0 comments about this story. Start the discussion »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me