Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Kind of Human

Chips that replicate the functioning of animals will likely be the first versions of the technology to make a commercial impact. But the hope is that once those prove to accurately predict the results of animal tests, human-on-a-chip versions will provide a good indication of how toxic a drug is likely to prove in human trials.

Animal testing plays that role now, but not very well. Four out of five drugs that make it through animal testing end up failing in human clinical trials, usually because of safety concerns. Part of the problem is that mice can’t tell you they have headaches, blurred vision, or stomach cramps. But the larger issue is simply that animals’ organs, and the processes that take place in them, are not identical to those of humans. No one knows how many drugs that would have been safe in humans were shelved because they sickened some animals. (Penicillin, for instance, is toxic to guinea pigs but fortunately was also tested on mice.)

Chips containing simulated human tissues and organs could also allow researchers to work out complicated multidrug schemes for treating various diseases without putting patients through agonizing rounds of trial and error. Shuler, for instance, is zeroing in on anticancer cocktails. He incorporates human cells from uterine or colon tumors in his chips, setting up a more realistic model of a particular type of cancer. He can then test the ability of various combinations of chemotherapy drugs to kill the cells without sickening the rest of the system. “To find good combination therapies, you need to run a lot of tests to determine the right doses and the order in which the drugs are given,” he explains. “It’s the sort of problem we can get our hands around with this technology.”

Neither Baxter nor Shuler claims that the animal on a chip is any sort of panacea for the complex and deeply challenging drug-development process. For one thing, the chips still have to prove in large-scale tests that they really do a better job than conventional cell cultures of predicting toxicity. But if they measure up, then the pills you take ten years from now may very well arrive thanks to the sacrifices of a silicon lab rat.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me