Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Vials to Vats

Those are pretty heady ambitions. But for now, Nanosys is looking to be one of nanotech’s survivors. And that means continuing to accumulate scientific expertise, efficiently scaling up its technology for the mass market, and keeping its focus on near-term revenues. While its solar-cell and display-electronics products won’t be ready for a few years, Nanosys has already used its expertise with nanowires to develop a new kind of microarray, or biochip. The company is getting ready to market the chip for DNA and protein analysis in medical applications. The technology will allow researchers to use traditional detection methods, but it will provide up to ten times greater sensitivity than existing devices, in part because its arrays of nanowires have much more surface area for biomolecules to bind to. That could speed up drug discovery and make blood tests more precise-and establish Nanosys as a major player in the billion-dollar market for DNA chips.

The near-term strategy is that sales of these microarrays and other devices nearing completion, as well as revenues from industrial R&D partnerships, will tide Nanosys over as it scales up its production of devices for use in consumer products. The company has already outgrown its original headquarters and is expanding into adjoining buildings in its complex. It is also considering building a large-scale production facility off-site, and its industrial partners have signed on to help sell devices as diverse as solar cells, displays, radio frequency identification tags, light-emitting diodes, and antennas. The plan is that Nanosys will ship out sheets of nano solar cells, thin-film transistors, and other nano-based structures on plastic, and its partners will integrate these materials into products such as roofing tiles, architectural glass, computer displays, and electronic components.

If Nanosys gets that far-and it appears to be well on its way-it will need to grow its crystals in huge vats rather than tiny vials. In turn, transforming these vats of nanocrystals into complex devices like solar cells and thin-film transistors will represent a leap in manufacturing technology. It will also reflect nanotech’s growing up and becoming a commercially viable way to make tomorrow’s electronics. Focusing on how to use nanomaterials in devices such as solar cells may not be “as sexy as building nanocomputers,” Empedocles admits. “But in terms of real market needs and real human needs, I think it’s a huge opportunity.”

So could Nanosys eventually become the next Intel or HP? No one will know for sure until it begins generating black ink on the bottom line-which could be only a couple of years from now. “Until you actually get products out there,” cautions Larry Bock, “you’ll never know whether the timing was right.” One thing is clear: if Nanosys becomes a commercial success, it will be a sure sign that nanotech has come of age.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »