Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Custom Robots

Bone implants presage far broader future applications that will follow improvements in speed, precision, and variety of raw materials. On Demand Manufacturing, which already makes plastic and metallic parts, hopes to offer materials that can perform under the most demanding of conditions, including the furnacelike heat of a rocket engine. The company has developed superalloy powders that can be shaped via direct-manufacturing machines and then baked into complex, superstrong turbine parts. The company is now taking the steps required to qualify the components for use in rockets.

Direct-manufacturing technology is going mobile, too. In a move that might one day have consequences for your local auto garage, the U.S. Army is developing truck-sized mobile units that can fabricate replacement parts-based on digital files or on-the-spot scans-for vehicles and weapons right on the battlefield.

And some are pushing the technology into the realm of robotics and electronics, complete with moving parts. As a first step, John Canny, Vivek Subramanian, and their colleagues at the University of California, Berkeley, are experimenting with ink-jet printing as a method for shaping organic semiconductors and electroactive materials into smart components that change shape in response to a voltage. One long-term vision is an all-polymer custom robot weighing less than one kilogram that could be printed for specific jobs, like fixing wiring in a tight spot on an airplane. But the Berkeley researchers’ initial goals are more modest; Subramanian says they expect to build their first demonstration widget-perhaps a small movable joint-within two years.

The technology could eventually go retail, too. John Wooten, general manager of On Demand Manufacturing, envisions something like a chain of three-dimensional Kinko’s equipped with direct-manufacturing equipment that could replicate pretty much any object that could be scanned or defined in a digital file. “It’s possible to envision a guy with his ‘65 Mustang and a broken window handle going there to have a new handle made,” Wooten says. In a similar vein, Carnegie Mellon’s Bourne foresees new options in personal customization: cell phones, CD players, and all kinds of consumer products with shapes and colors specified by customers.

While these retail applications are still hypothetical, businesses are sprouting to serve manufacturers on a contract basis. Companies like Accelerated Technologies in Austin, TX, and Met-L-Flo in Geneva, IL, accept digital design files and make rapid prototypes-a concept that could evolve into custom-printing products for retail customers. If such a service does materialize, a neighborhood car restorer looking to duplicate a tiny piece of grillwork, or a homeowner replicating old trim, would find it akin to a digital Home Depot, with an infinite virtual stockroom of customized products.

0 comments about this story. Start the discussion »

Tagged: Business, Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me