Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Boning Up

In some ways, direct manufacturing is a natural consequence of the relentless pressure to reduce the time it takes to move a product from concept, through design and development, to commercial reality. When computer-aided design and digitally controlled tools began infiltrating factories in the 1970s and 1980s, the stage was set for rapid prototyping, which uses printing technologies to create three-dimensional objects that serve as prototypes for, say, toys or car parts. With prototypes in hand in just hours-rather than the weeks or months hand-carving and casting once took-designers can more quickly refine products, and engineers can quickly detect and correct problems.

The first rapid-prototyping machines used lasers to bind successive layers of a liquid polymer-a process called stereolithography. Later versions used a broader range of raw materials, such as powders that would fuse together when hit by a laser beam. Another leap came in the 1990s, when the method expanded beyond lasers to include printheads that spewed binding liquids onto powders, adding speed and an even greater variety of materials (see “Players in Direct Manufacturing,” bottom). At the same time, the push was on to develop these technologies to the point that they could make finished products, not just prototypes. “In the late 1980s, stereolithography had just come out, and it was very inspiring to see,” says Emanuel Sachs, a mechanical engineer at MIT who developed the printhead method. “What I set out to do was to shift the focus from making prototypes to creating functional parts directly.”

That goal has now been met. On a recent day at the Therics laboratory in Princeton, NJ, two employees in cleanroom suits watched as a car-sized printer made 300 two-centimeter-long chunks of substitute jaw bone. A linear array of eight printheads swept over successive layers of a powder called hydroxyapatite (the major mineral in natural bone), selectively dispensing tiny droplets of an organic binding liquid that would later be burned out during a furnace treatment. Under the relentless sequence of droplets-800 per second-the otherwise formless mass of powder began to take shape. The U.S. Food and Drug Administration approved Therics’s bone substitute in late May, and while it hasn’t yet been used in an implant in humans, it is already in the hands of surgeons who intend to test it soon. As a means of making replacement bone, direct manufacturing has some advantages. Say an accident victim has lost a fragment of arm bone. The piece can be digitally reconstructed using images of the same bone on the other arm. What’s more, the printing technology is able to create pores just 50 micrometers wide, which allow the bone segment, once implanted, to host real cells that make real bone, strengthening and eventually supplanting the implant.

The FDA’s approval of Therics’s directly manufactured bone substitute is a milestone for the manufacturing technology. Indeed, Ranji Vaidyanathan, a materials scientist at Advanced Ceramics Research in Tucson, AZ-which is developing its own printed bone substitutes-expects directly manufactured bone to be common in three to five years. “I would say it will change the way we look at replacement bone,” he says.

Players in Direct Manufacturing
Company Technology Applications
3D Systems (Valencia, CA) Selective laser sintering machines that use lasers to bind plastic or metal powders; stereolithography systems that cure liquid resins with laser-generated heat Medical implants and prosthetics, military-jet components, hearing aids, Formula 1 race car parts
Stratasys (Eden Prairie, MN) Heated plastic expelled by moving nozzles Pump parts and small gears
Therics (Princeton, NJ) Three-dimensional-printing technology, in which arrays of printheads spray droplets of organic binders onto powders Bone substitutes with the porosity needed for cells
to take hold after implantation
On Demand Manufacturing
(Camarillo, CA)
The use of 3D Systems’ sintering machine to create high-strength parts Aircraft ductwork and other custom plastic and metal parts for aerospace applications

Siemens Hearing Instruments
(Piscataway, NJ)

The use of 3D Systems’ sintering machine to manufacture custom-fitted hearing-aid shells Hearing-aid shells
Z (Burlington, MA) Ultrafast three-dimensional printer that uses proprietary powders Full-color geographical models for military planning

0 comments about this story. Start the discussion »

Tagged: Business, Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me