Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

In late October 2001, Tomas Foral, a 26-year-old master’s student working in a pathology laboratory at the University of Connecticut in Storrs, was asked by a professor to help clean out a failed basement freezer. Foral discovered that the freezer contained several vials of cow tissue infected with anthrax. What happened next is in dispute: university officials would later say the professor told Foral to destroy the vials, while Foral maintains that the professor’s instructions were unclear. In any event, he saved two of the vials for future research by putting them in another laboratory freezer.

A month later, according to media accounts, an anonymous tip led police to Foral and the saved vials. The pathology laboratory building was shut down for more than a week, the FBI began an investigation of Foral, and in July 2002 the government charged him with having violated the antiterrorist USA Patriot Act. Initiated in the wake of the attacks on the World Trade Center and the Pentagon and passed on October 26, 2001, the act contained a section that responded to the anthrax mailings and deaths that had begun early that month. The section prohibited possession of any of more than three dozen lethal biological agents-including anthrax-or genetically modified versions of them, unless it was “reasonably justified by a prophylactic, protective, bona fide research, or other peaceful purpose.” The penalties threatened alleged violators like Tomas Foral with a hefty fine and up to 10 years in prison.

That section of the USA Patriot Act was just one in a sweeping set of postSeptember 11 provisions designed to control access to almost every aspect of science and technology-not just biology-that could conceivably aid terrorists. In another section, the act tightened regulations on foreign students and provided, among broad controls on all foreigners entering the country, $37 million for a federal electronic database-the Student Exchange Visitor Information System, first authorized in 1996 but then neglected-containing information on foreign students and visitors at U.S. colleges and universities.

A subsequent measure, passed in May 2002, increased the responsibility of educational institutions for recording information about their international students, including whether they were maintaining full academic loads, had changed programs, or had ended their studies. (Rutgers University administrator Marcy P. Cohen lamented to a reporter that she used to spend her time helping foreign students, but that now “I’ve become a data monitor for the government.”) That June, legislation was enacted to protect the public against bioterrorism by denying “restricted persons”-including drug users, dishonorably discharged military personnel, and people suspected of involvement with terrorist organizations-access to dangerous biological agents and toxins. The law also prohibited citizens of countries designated as sponsors of terrorism (currently Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria) from accessing certain biological agents.

A deluge of regulations followed the legislation, including draft requirements issued in December 2002 that filled 50 pages of the Federal Register and affected universities, private corporations, and government laboratories handling any of nearly 50 “select” biological agents-for example, Ebola virus, botulism-causing bacteria, and the toxin Ricin. All the laboratories had to agree to unannounced inspections, register their agents with the government, and submit plans for training lab workers and maintaining the security of the agents. Everyone handling the agents would have to undergo a background check and obtain security clearance. The labs would also have to obtain federal approval before conducting genetic engineering experiments that might increase the resistance of an agent or toxin to drugs.

More alarming to biomedical scientists were increasing signs-beginning with an order from the White House chief of staff in March 2002 telling federal officials to keep the lid on unclassified but “sensitive” information related to weapons of mass destruction-that the Bush administration might restrict the as yet untrammeled publication of unclassified research. How aggressively that ominous initiative would be pursued remained to be seen, but the fate of Tomas Foral, a member of the Reserve Officer Training Corps, suggested that the government meant business. Although Foral said he had frozen the anthrax spores for further research, a purpose seemingly allowed by the USA Patriot Act, he escaped prosecution only by agreeing to community service and six months of probation. A letter from the U.S. attorney describing his alleged illegal act would go to his ROTC commanding officer. Foral feared that his professional future might be compromised.

Security restrictions are old hat to physical scientists, who have been dealing with similar constraints since the dawn of the nuclear age, but they are new to biomedical researchers, who have previously had to cope only with regulations affecting public health and safety. Despite security constraints, U.S. physics prospered during the Cold War, and biology may flourish similarly in the future-especially since it is receiving handsome funding ($1.5 billion to the National Institutes of Health in fiscal 2003) for research into bioterrorism.

But the new restrictions, and those on the horizon, may pose difficulties for contemporary biology that are far more chilling than those that beset early Cold War physics. The current constraints on foreign students and visitors in the name of national security have already worked “serious unintended consequences for American science, engineering, and medicine,” according to the presidents of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine, in a December 2002 statement protesting the government’s policies. Censorship of sensitive unclassified research threatens worse effects, by menacing open communication in numerous biomedical areas-including the study of disease and the immune system. It could thus, some experts charge, threaten researchers’ abilities to engineer therapies and cures-and that could place the very competitiveness of the nation’s biotechnology industry in peril.

Pages

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me