Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Does Race Matter?

The U.S. Food and Drug Administration is now deciding whether to approve a controversial heart disease treatment called BiDil that is specifically meant for African Americans. (The drugmaker, NitroMed of Bedford, MA, claims that blacks are twice as likely as whites to suffer heart attacks.) This new “ethnic drug” is far from an anomaly. Earlier this year, the FDA proposed guidelines prescribing that all drugs in development be evaluated for varying effects on different racial groups.

As genomic tools improve, and there is an increasing emphasis on pharmacogenetics (the use of information about genetic variations to predict a drug’s safety or effectiveness), the debate over race and genetics will be most vigorously played out in the medical arena. Race, of course, already plays a huge role in how doctors diagnose and treat patients. Physicians are well acquainted with the idea that Caucasians with northern-European ancestry have higher rates of cystic fibrosis than Asians and blacks, while African Americans suffer from higher rates of hypertension and diabetes.

“Race is used all the time. It’s part of a doctor’s calculations,” says Mildred Cho, codirector of Stanford’s Center for Biomedical Ethics. But the downside to using race as a way to view genetic differences, she says, is that it tends to oversimplify a person’s complex genetic makeup. “It may seem like a good shortcut, but it can be misleading. It’s a shortcut to nowhere.” Most differences will be relative, she says. Imagine, for example, that researchers find that 60 percent of Asians fail to metabolize an enzyme, while 40 percent of Caucasians fail to do so. In terms of treating a particular patient, she points out, the results “are clinically not very helpful.” Similarly, she argues, new drugs like BiDil are “jumping the gun” by targeting specific races “without the necessary understanding of underlying biological causes” of disease differences.

The hope is that the HapMap and other new, advanced genomic methods will help clarify complex genetic differences and, eventually, give physicians the tools to profile the genetics of each person and use that information to guide treatment decisions. If you want to know how to medically treat a person, you need information about him or her, says London’s Goldstein. “Only in the ignorance of that,” he says, “do you think about the population and flop on a racial label and say, That’s good enough.’”

It is into these turbulent waters that the HapMap is diving. And while on one level it is only a tool to help determine specific DNA variants, the project will almost inevitably play a critical role in future debates over race, medicine, and genetics. Whether it plays a productive role-helping to destroy stereotypical concepts of race-or whether it is manipulated by those wishing to gain genetic credence for racist agendas, is still anyone’s guess.

What does seem certain is that the HapMap will produce surprises and scientific insights into human variation that both scientists and the public will struggle to understand. And like any cartographers exploring unknown geography, HapMap researchers will surely happen upon some tricky terrain. The discovery several years ago, for example, that a series of mutations in the cancer genes BRAC1 and BRAC2 were particularly common in Ashkenazi Jews raised widespread fears about how these findings could be used to stigmatize Jewish people. Imagine the potential for social harm if the HapMap produced genetic data that eventually revealed that a specific population has a propensity, say, for alcoholism or schizophrenia.

“I’m not a naysayer” to the HapMap project, says NYU’s Duster. “But I feel it is fraught with all kinds of dangers.” Those involved, he says, need to be particularly sensitive to how the genetic variations are explained to the public. “There will be differences” between populations, he says. “The wrong way to proceed is to report the differences as more profound than they are and with consequences for anything other than the particular disease.”

Participants in the project say that they are aware of these dangers, but that the potential benefits justify the risks. Altshuler points to the years he has spent treating diabetes patients and facing the frustration of not being able to offer a solution. “The reason that I do this research is that the most striking thing about medicine is how little we know, how little we have to offer patients for common diseases.”

If the HapMap fulfills its potential to help medical researchers and physicians better navigate the treatment of common and devastating diseases, like diabetes, schizophrenia, and hypertension, it will have been dangerous ground well worth exploring.

1 comment. Share your thoughts »

Tagged: Biomedicine, copy number variation, geneology

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me