Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The sun-baked town of Mojave, CA, with a population of only 3,700, boasts an airport that takes up almost as much area as Los Angeles International. The vast, isolated site at the mountain-rimmed edge of a wide expanse of high desert plain, has been home to several maverick aerospace companies. Voyager, the extremely lightweight airplane that in 1986 became the first to fly nonstop around the world without refueling, was spawned here. Now, in an unassuming low building at the airport’s edge, the future of space transportation is, just possibly, being born.

Mind you, that future doesn’t look like much yet: a tiny two-seat airplane that resembles a jet fighter with its tail chopped off and stubby winglets installed near its nose. Last July this lightweight craft, dubbed EZ-Rocket, reached a new aviation milestone when pilot Dick Rutan, who had also piloted Voyager, put its twin rocket motors through a pivotal “touch and go” maneuver: taking off, shutting down the engines, landing, firing up the motors again, and taking off without stopping. This represented a high-water mark in giving airplanelike flexibility and controllability to a rocket-powered craft: an achievement that carries heightened significance since the Space Shuttle Columbia catastrophe raised new questions about the viability of the U.S. government’s manned space program.

Each of those two flights lasted less than 15 minutes and neither reached altitudes higher than 3,000 meters. But they showed that Xcor Aerospace, the company behind EZ-Rocket, may have the best shot yet at actually giving the world a reusable rocket plane-bringing routine airlinelike operations to the world of rocketry and slashing launch costs to as little as one-tenth those of launching the space shuttle and today’s expendable rockets. Such a craft could, within several years, allow cheap satellite deployment for research and communications and jump-start space tourism. Over a longer time frame, successor craft might provide a New York City-Tokyo passenger flight that takes less than three hours. And because breaking free of Earth’s gravity is the largest cost of every space mission, cheaper launches are essential prerequisites for such visionary ventures as space-based solar collectors that beam energy to Earth 24 hours a day and precious-metals mining from asteroids.

Pages

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me