Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The leap from laboratory to field appears, however, equally daunting these days. An apomictic corn plant will be a genetically modified organism, and in much of the world, such organisms aren’t welcome. European Union authorities haven’t approved the planting or importation of any new genetically engineered crop since 1998. Despite widespread hunger, Zambia recently turned away U.S. food aid because the shipments contained genetically engineered corn. And for the last four years Mexico has not allowed CIMMYT to test genetically engineered corn outside a greenhouse. Indeed, if opponents of genetic engineering have their way, no genetically engineered corn will ever grow in Mexican soil.

Mexico is the ancestral homeland of corn, the place where ancient peoples first domesticated this crop. It is also the world’s singular storehouse of corn’s genetic diversity: Mexican farmers maintain an astonishing number of corn varieties. Adapted to an enormous array of climates, Mexico’s corn comes with kernels in black, white, and every color in between.

So when scientists reported finding traces of genetically engineered corn in remote corn fields of southern Mexico a year and a half ago, it was particularly troubling to those worried about the genetic diversity of this unique resource. Indeed, although the study’s findings have been hotly contested by other researchers, some environmentalists believe it uncovered a disaster of epochal proportions. “The Mesoamerican centre of agricultural biodiversity is contaminated with GM [genetically modified] maize,” announced the ETC Group, an activist organization based in Winnipeg, Canada. Greenpeace declared that “this irresponsible contaminationis putting at risk the whole genetic structure of the corn populations.”

The image of engineered plants poisoning a biological well is powerful but misleading, says Mauricio Bellon, a CIMMYT human ecologist who has been studying Mexican farmers’ maintenance of their traditional varieties, or landraces: “People think that landraces are like fragile vases in a museum, but that’s not the case.” Landraces aren’t pure, and they aren’t static, says Bellon. Mexican farmers, he discovered, continually bring in new seed from neighbors and even from faraway villages to add to and, they hope, invigorate their fields. It’s a bit like shuffling in cards from a new deck to increase the odds of a winning hand. The good cards-the superior genetic traits-stand a chance of staying in the game. Farmers try to choose them for replanting the following year, and they discard the bad cards.

There’s no apparent reason why genetically engineered crops should displace or destroy Mexico’s genetic diversity, Bellon says. The new genes would become part of the mix, and they’d persist only if farmers liked the results. But, he hastens to add, genetically engineered corn in Mexico may pose other risks that need careful consideration.

Indeed, nearly everyone who has explored the surge of opposition to genetically engineered crops-in Mexico and elsewhere-has discovered a mlange of motivations. Concerns about the integrity of nature and the safety of food are mixed with hostility for the corporations that have been driving this technology into the marketplace. Mexico imposed a moratorium on the planting of all genetically engineered corn, for instance, not when CIMMYT conducted its first field trials, but when St. Louis-based Monsanto and other companies began lobbying for approval to sell their genetically engineered crops to Mexican farmers.

One encounters antipathy toward biotechnology, in fact, within CIMMYT as well. CIMMYT’s crusty plant breeders sometimes dismiss their organization’s biotech program as a boondoggle, an expensive fad that has squandered millions of dollars without delivering, so far, a single useful product to farmers. Many resent the deals-accompanied by confidentiality clauses and agreements to protect intellectual property-CIMMYT’s biotechnologists have struck with companies. The center should be accountable only to the world’s poorest farmers, these critics say, not multinational biotechnology empires. At this point-where the humanitarian mission of CIMMYT encounters the goals of private enterprise-the tale of apomixis takes its final ironic twist. For according to some observers, the corporate friends of apomixis are also its worst enemies.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me