Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

If it were not for the great variability among individuals,” 19th century physician William Osler observed, “medicine might as well be a science and not an art.” There will always be room for art in medicine, but the advent of diagnosis and treatment based on molecular knowledge of diseases is shifting the equation decidedly toward science. Almost from the moment the Human Genome Project completed its draft sequence in 2000, the intimate genetic knowledge it conferred has been accompanied by promises of a powerful, customized form of medicine. Visionaries talk of people carrying their entire genetic sequences on personalized CDs, of medicine artfully tailored to individual anatomies, and of diagnostic tests’ predicting who is likely to respond to a particular medicine, who is likely to react badly, and who is unlikely to benefit at all.

Armed with details of individual variation, biologists could parse patients  into subgroups and predict which is likely to have an aggressive or indolent form of a disease and which would respond to one drug rather than another. Allen D. Roses of GlaxoSmithKline and Duke University School of Medicine has predicted that this approach, called pharmacogenetics, “will change the practice and economics of medicine,” and the popular media have picked up and amplified that message. In 2001 BusinessWeek hailed personalized medicine as an idea that “has captured the imagination of biotech futurists,” and Newsweek suggested that “if pharmacogenetics works, the days of one-size-fits-all therapy could go the way of bleeding by leeches.”

But underneath those extravagantly rosy and somewhat wishful predictions lie important scientific, economic, and  societal questions, beginning with one of feasibility. David Altshuler, director of the Medical and Population Genetics program at MIT’s Whitehead Institute and an endocrinologist at Massachusetts General Hospital, points out that personalized medicine remains “a model, a hypothesis” of the way medical care will evolve. “The genome is going to empower all sorts of things, but it’s not going to happen for 20 years,” he says. Along the way, personalized medicine is likely to raise a number of prickly issues: foremost among them is the paradox that the more personalized the medicine, the less interesting the business. As numerous observers have pointed out, big pharmaceutical companies have become addicted to blockbuster drugs. Targeting a smaller subgroup of a patient population by definition focuses on a smaller market.

Theoretically, one economic advantage of personalized medicine is that clinical trials might be conducted more efficiently and with a greater chance of success when researchers can so specifically select patients for testing. But how small does the pie of potential patients have to shrink before it ceases to be economically viable? Furthermore, personalized medicine is not without social implications. A technology that identifies who will benefit from a new treatment automatically identifies who won’t benefit too.

Researchers, venture capitalists, and economists have been gnawing on these questions and wondering how the field of personalized medicine actually will evolve. Despite the compelling science, some investors find that the economics still leave a lot to be desired-at least in the short term. A venture capitalist who requested anonymity notes, “The vision of personalized medicine is that you’ll go to your doctor’s office, get your finger pricked, give a drop a blood, and it will be put in a machine-right there in the office-which will tell you what drug is going to work for you. But we haven’t seen very many companies that have a viable business model in this area.”

The view from the lab is different. “The treatments we currently use to treat most patients are grossly ineffective. In type 2 diabetes, many people don’t respond,” says Altshuler. “If it were true that you could identify five to 10 percent of the market, identify and treat them in a controlled and perfected way, I think it would be a wonderful thing, and I think you could make money on it too.”


0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me