Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The search for a better brain-imaging technology has taken a novel turn at Hitachi Advanced Research Labs in Hatoyama, Japan. The company’s researchers aren’t just perfecting a new imaging machine-a reasonable goal for the electronics giant-they are helping to conduct basic brain-science studies geared at improving education and even promoting world peace. To achieve those goals, researchers are using imaging advances to do everything from observing the pathways of comprehension in newborns to tracking the ways an adult brain compensates for injuries while it performs such high-level tasks as writing, solving math problems, and responding to spoken commands.

Hitachi’s technology, known as optical topography, is well suited for such studies. Unlike other brain-imaging methods, optical topography allows the patient to sit, move, write, and talk while it monitors activity in specific regions of the subject’s cerebral cortex, the outer layer of the brain where such functions as language are handled. The patient simply wears headgear festooned with optical probes and detectors, and the imaging system uses near-infrared light to provide a view of blood flow. Changes in blood flow might indicate comprehension: for example, flow to the language areas of the cerebral cortex increases when the patient recognizes spoken words. Optical topography detects such changes because although near-infrared light passes through skin and skull, it is absorbed in the cerebral cortex by hemoglobin in the blood. The more blood flow, the more hemoglobin-and the less light is reflected back to the device’s detectors.

Other companies are also developing medical imaging equipment, but it is the application of this technology to basic cognitive studies that makes the Hitachi research group stand out. One long-term goal, for instance, is to use insights gleaned from the imaging to improve educational curricula. “Education is becoming a natural-science field, and the key is observing brain activity by noninvasive means,” says Hitachi senior chief scientist Hideaki Koizumi, inventor of the technology. “We can improve educational efficiency by knowing the exact developmental stages of a child.” Information from the imaging could also aid the development of better therapies for elderly patients who suffer from dementia or for victims of strokes and other brain injuries.

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me