Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Populated by programmers worrying about fixes for the latest operating systems and rollouts of new applications, a software company might seem an odd place for rethinking the very foundations of computation. But at Microsoft Research, Michael Freedman is doing just that. One of the world’s most heralded mathematicians and a 1986 winner of the Fields Medal-math’s equivalent of a Nobel Prize-Freedman is spending his days pondering one of the toughest puzzles in physics: how to transform quantum computing from an abstract dream into a feasible technology. And he believes he may have found a solution.

For decades, physicists have speculated that quantum computers would define the ultimate limits for speed, size, and power in computers. The peculiar laws of quantum mechanics dictate that a “quantum bit” has almost magical computing potential. While the digital bits stored in a desktop computer correspond to either ones or zeroes, quantum bits-sometimes represented in the spin of nuclei or ions-can be both ones and zeroes simultaneously. Even odder, quantum bits are linked by a phenomenon called “entanglement.” Together, these properties mean that a computational operation on one quantum bit affects others, implying potentially awesome computing power. In theory at least, quantum computers will need only microseconds to crack even the most sophisticated encryption codes and will be able to search petabyte databases in a flash.

“The idea is to store a bit of information on each atom,” says MIT quantum computer researcher Seth Lloyd. “It’s the logical endpoint of Moore’s Law.”

At this nanoscopic scale, however, the world is anything but logical. For those hoping to build a quantum computer, that is both good and bad, and it’s where Freedman’s work comes in. Specifically, he’s trying to solve a problem that has bedeviled quantum computing researchers seeking a way to store information in the spin of nuclei or ions: even the slightest disturbance scrambles the quantum bits and destroys their entanglement. Topology, Freedman’s brand of abstract math, might provide the answer. Topologists worry about the qualities of geometric shapes rather than quantities such as size: the way strands of a knot are entwined is more important than how big the knot is. And Freedman believes that if quantum bits were based on topology, they would be far more robust.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me