Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

An abalone shell is made chiefly of calcium carbonate, which is organized into multisided “tablets” that are closely packed in layers. A rubbery polymer glues the tablets together and serves as a cushion between the layers. The shells are unlikely to break or shatter because when a microcrack does form, it propagates along complicated, tortuous paths that, in effect, diffuse the crack. The polymer layers also absorb the damage; so while shells get the equivalent of bumps and bruises, they don’t easily break.

GE materials scientist Mohan Manoharan and his team started work on seashells in January 2002, when the company formed its nanotech group. Before the group started trying to synthesize materials based on seashell structure, however, the researchers spent months poring over academic articles, trying to understand why “the right atom is in the right place,” says Manoharan. Their study of seashell microstructure complete, the researchers began attempts to replicate nature’s results. Manoharan’s team is building computer models of shell-inspired materials, starting with models that will consist of just a few layers. The group has also begun to synthesize the model materials.

The prospects are tantalizing for General Electric, a leading maker of high tech ceramics, including coatings that protect metal parts of jet engines against extremely high temperatures. The development of sufficiently strong and shatter-resistant lightweight ceramics could lead to all-ceramic components and, therefore, far lighter and more efficient jet engines.

For Manoharan, a former academic, the work on shells is just the type of basic research that comes naturally. When he was seven years old, he recalls, he broke his foot in a cricket accident at school in India. “I sat at home and wondered how bones healed,” he says. And he asked himself why people couldn’t build materials as sophisticated as those found in nature.

Now, years later in a lab at GE’s research center, he is pondering shells, not bones. But his question remains much the same.

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »