Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A half-meter-long protein floats in midair, several centimeters in front of a monitor. It looks like an oversize curled ribbon from a birthday package. As three molecular biologists maneuver around the image, studying the complex molecule from different angles, it begins to fold, slowly twisting and interlocking into a tangled knot. Its shape is a clue to the function it performs in the human body: some proteins produce chemical reactions or behave like a kind of scaffolding for cells, while others help with cell division. Creation of a drug that encourages or blocks a protein’s action-say, preventing cancerous cells from dividing-could lead to more effective treatments. One of the researchers uses a stylus to prod the protein at several points. As she does so, the protein refolds itself, revealing a location that could be targeted with a drug to inhibit the protein’s function.

This kind of interactive science is on the way, and it will be made possible by a new generation of 3-D video displays. The technology enlists the power of holograms-or reasonable facsimiles thereof-to dish up startlingly realistic images that appear to pop out of the screen. Imagine the 3-D scenes produced by the venerable View-Master toy cranked up to “11” on the reality dial. But the new 3-D video images won’t require  special viewing devices. Users won’t have to don the headgear or eyewear that tends to be distracting and can cause eyestrain, as they do with current so-called 3-D displays.

No. Three-dimensional holographic video images will be generated by a computer rather than being fixed in a static medium; they will be shown in full-motion color and, with input from a user, changed on the fly. What’s more, viewers who move around a holographic video image will be able to see it moving from every side-a phenomenon important to realism and one that many conventional eyeglass-based systems cannot replicate.

The mainstream of doctors, scientists, researchers, and new-product developers who already rely on high-end computer displays to visualize their work will see dramatic differences in this new technology. Currently their work is constrained by the flat, two-dimensional images of conventional displays. No matter how cleverly the screens are dressed up, they can’t convey all the nuances, intricacies, and immediacy of real objects in the 3-D world. Because the new video holograms produce fully 3-D images that float in space near the viewing screen, they can be examined from different angles by multiple viewers. Geophysicists examining high-resolution images of rock formations will be able to predict the location of hidden oil deposits with greater accuracy. Industrial designers will be able to modify a sports car’s body using the tip of a stylus, instantly establishing the change’s effect on overall design. Military commanders will be able to visualize the best battlefield scenario. Surgeons will be better able to determine the safest approach for removing a brain tumor without ever wielding a knife. “Someday we’re going to wonder how we used to put up with 2-D images,” says Stephen Benton, who heads the Spatial Imaging Group at the MIT Media Lab.

The group is one of two pioneering research teams leading the charge to perfect and commercialize the new generation of 3-D displays. Benton, a renowned founding member of the lab, is the inventor of the rainbow holographic images that appear on many credit cards and magazine covers. The other team, at New York University’s Media Research Lab, is working on a less expensive version called 3-D autostereo display, which could become a commercial product within the next few years. The NYU effort is being led by Ken Perlin, a multimedia legend who won a Technical Achievement Award from the Academy of Motion Picture Arts and Sciences in 1996 for his development of a sound and texture technique that is widely used in films today.

The two media labs lead the quest, but they are not alone in their pursuit. In December 2000 Ford Motor and London-based QinetiQ launched Holographic Imaging, an R&D company in Royal Oak, MI, to create interactive imaging workstations for car designers. And several Japanese groups also have entered the fray, including teams at Sony, NHK Laboratories, and Nihon University. “Twelve years ago everyone thought this was completely impossible,” says Benton. “Now there’s real competition.”

The first systems produced by these efforts will likely be specialized applications in fields such as surgical planning and automobile design. But versions cheap enough to serve as home entertainment applications should quickly follow-after all, millions of video game players would give their left control-pad thumbs to step into a fully 3-D version of Mario’s world-perhaps forever rendering obsolete the two-dimensional views to which most screens have been limited. In short, sums up NYU’s Ken Perlin, “All the reasons for putting up with the artifice of things being flat will go away.”


0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me