Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Setting the Standard

In the long run, the interest of major players like Intel, IBM and Sony could well give ultrawideband the push it needs to become as ubiquitous as cell phones. But first, its adherents will have to resolve the present multitude of proprietary approaches into a single standard, like the wireless networking standards 802.11a and 802.11b. Without standardization, one brand of DVD player, for instance, might not be able to send ultrawideband data to a TV from a different maker. Rofheart predicts that by early next year, the Institute of Electrical and Electronics Engineers will endorse an “802” standard for personal-area networks that incorporates ultrawideband. That, he says, will go a long way toward securing a market for the technology.

European and Asian adoption of regulations similar to the FCC’s could help the technology even more, by creating a worldwide regulatory framework that would finally allow wireless devices to work in any country. “Because we’re not dealing with frequencies that have been assigned differently in different countries, we have the first possibility of creating a global interoperable standard,” says Pulse-Link president Watkins. IBM’s Hirt says that the European Conference of Postal and Telecommunications Administrations plans to formulate an ultrawideband policy by the end of 2003 and seems to be leaning toward mirroring the FCC regulations.

The action that would most benefit ultrawideband would be for the FCC to allow transmissions with higher power and at lower frequencies. And indeed, the commission is scheduled to revisit its ultrawideband regulations within six to 12 months and has signaled an intent to relax its restrictions. That could result in even simpler-to-design systems that might, among other things, solve the expensive “last-mile” problem by transmitting data from high-speed fiber-optic Internet networks to homes. Such hookups would provide connections tens of times faster than those offered by telephone and cable companies.

Some skeptics think it will be years before ultrawideband takes off at all. Kevin Kahn, who heads Intel’s efforts, believes a practical data transmission product is at least three to five years away. Ken Dulaney, a mobile-computing analyst at the consulting firm Gartner, is even more conservative, estimating that it may take seven years for the technology to gain the kind of consumer acceptance 802.11b networks enjoy-if it ever does. Ultrawideband, he says, is “really an engineering experiment that now at least has a legal backing.”

But whether ultrawideband matures in two to three years or unfolds over the course of a decade, Multispectral Solutions president Fontana is confident that the technology will eventually succeed. “When the FCC opens up over nine gigahertz of spectrum, even if these companies don’t survive-including us-there will be other companies that will take advantage of that,” he says. And when they do, the world may be a giant step closer to living like the Jetsons.

An Ultrawideband Who’s Who

Company Funding Applications Status
Time Domain
(Huntsville, AL)
Investors include Sony and Siemens Data transfer; precision location; radar Radar products on the market; first communications chips to be released this year
Multispectral Solutions
(Germantown, MD)
Military contracts (primarily DARPA, air force and navy) Voice communications; data transfer; precision location; radar Military systems in use; civilian applications under development
XtremeSpectrum
(Vienna, VA)
Investors include Cisco Systems, Motorola and Texas Instruments Multimedia data transfer First chips released this year
ther Wire and Location
(Nicasio, CA)
Military contracts (primarily DARPA) Precision location Prototype demonstrated
Pulse-Link
(San Diego, CA)
Undisclosed Data transfer; precision location Chips scheduled for release 2003
Pulsicom
(Or Yehuda, Israel)
Investors include Intel Capital Precision location Chips scheduled for release late 2003
Intel
(Santa Clara, CA)
Internal Data transfer Prototype demonstrated
IBM Research
(Zrich, Switzerland)
Internal Networking Long-range R&D
AT&T
(New York, NY)
Internal Multimedia data transfer Long-range R&D

0 comments about this story. Start the discussion »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me