Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

No one had intended to make railroad history on May 5, 1998. It’s just that there was a shortage of locomotives in Phippsburg, CO. Instead of the usual five locomotives, only four were available to pull a 108-car coal train up Union Pacific Railroad’s steep Toponas grade on the western slope of the Rocky Mountains. What followed is, among locomotive builders, legendary.

The locomotives were brand new General Electric behemoths with a twist: their traction motors operated on alternating current rather than direct current. Climbing the Toponas grade that day, the trains slowed to a barely perceptible six meters per minute. No self-respecting engineer would have tried such a foolhardy trick with conventional direct-current motors: wheels would have slipped, the train would have stalled, and the motors themselves would have been fried like an egg. But none of those things happened. Indeed, later investigation showed that the locomotives had been producing more pulling power than was thought possible at that speed. This feat of strength initiated a radical transformation of railroading-a revolution that stems directly from advances in information technology.

Technologically speaking, it is difficult to find anything in railroading that has not changed in the last decade. Dozens of microprocessors in today’s diesel locomotives run almost all of their systems, from fuel feed to cab air conditioning. Pole lines that once flashed past the windows of speeding passenger trains are disappearing in favor of microwave or fiber-optic communications. Experimental new dispatching and control systems may soon tell engineers if they are using the most fuel-efficient throttle settings.

Say “trains” to most people and they think about the passenger variety. But in the United States, the railroads with the greatest economic impact are those that transport cargo. Railroads haul 25 percent of U.S. freight. They are easily the most efficient way to move coal, grain and bulk chemicals. But the railroad companies have long had a sort of love-hate relationship with cutting-edge technology. They only abandoned coal-fired steam locomotives, for example, when General Motors developed the diesel-electric engine and gave demonstrations to railroads around the country in the 1940s. And even then, many railroads stuck with steam for years.

However, over the last decade, railroads have been engaged in their own version of an information revolution. The combination of computers and wireless systems gives railroads greater customer service capacity and better dispatching and cost controls-as well as dispensing with armies of clerks. Charles Dettmann, executive vice president for operations, research and technology at the Washington, DC-based Association of American Railroads, argues that railroads’ competitiveness-perhaps even their existence-depends on their use of information technologies.

“Railroad companies are a very hard sell. I am usually in the position of pushing them farther than they want to go,” says Carl D. Martland, senior research associate at MIT’s Center for Transportation Studies and a consultant to the railroad industry. “They insist on knowing there’s going to be a productivity benefit and will only go as far as that benefit takes them. They have done a very good job of saying, Does this technology do me any good?’”


2 comments. Share your thoughts »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me