Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Computing with Feeling

While games have been influencing computer graphics for over 30 years, their effects on other technologies are just emerging. Haptics, which adds the sense of touch to computing through force feedback and other mechanisms built into input devices like mouses and joysticks, is one discipline making the transition from gaming to widespread adoption (see “Touchy Subjects,” TR April 2001). “Haptic technology really made its first inroads in the gaming area,” says Bruce Schena, chief technology officer of Immersion, a tactile-feedback device maker whose software led the way toward haptic interfaces for the PC. “Now we’re seeing it show up more and more places, further into the mainstream.”

Haptic interfaces were first available to the public in the arcade. Sega’s 1986 OutRun was a driving game with a haptic twist: drive onto the shoulder, and the steering wheel trembled; crash, and it shook violently. But before 1996, PC games couldn’t include force feedback because Microsoft Windows didn’t have any way to output data to a controller. Then Immersion built a tool kit to help PC game makers add haptics to games, enabling players to feel various forces through a joystick, enhancing their experience and improving their control of simulated planes and cars. When Microsoft saw the first few games using the technology, it approached Immersion, and the two worked together to create tools to both help programmers and provide the necessary support in the operating system. Now, all main consumer haptic interfaces for the PC use the company’s technology.

First marketed to PC gamers in a special mouse that was fixed to a pad, Immersion’s technology has been integrated into the more ordinary-looking iFeel mouse from Logitech. Now haptic enhancements are available for Web sites and for Microsoft’s Word and Excel, allowing users to “feel” when they mouse over a link or select a button on a toolbar.

While the ability to feel a Web link may not seem especially enticing, Immersion is exploring the use of the same basic interface to let PC users experience other sensations, such as temperature or complex textures-a feat that could have practical implications for, say, comparing the fabrics of clothes at online merchants. It has also worked with other companies to create “streaming tactile content” for the Web; objects that users can pivot and play with visually today will be touch enhanced in the near future. And Schena says tactile cues will go even farther. Immersion’s research has shown that tactile cues become especially useful as visual interfaces get smaller and are used on the go, so it has developed haptic feedback technology for the “touch pads” used in laptop computers and is working on extending it to cell phones and touch screens for personal digital assistants. Says Schena, “We believe haptics will become an expected part of interfaces for all kinds of computing devices. Five years from now, for example, if you work on a PC that doesn’t have tactile feedback, you’ll think something’s broken.”

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me