Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

For an electric-power generating station, Mohegan-2 cuts a singularly unimpressive figure. There are no cooling towers raking the sky, no forest of transmission towers, no vast turbines, no giant paddles revolving in mighty rivers. Basically, it looks like a very tall dumpster.

But when it is installed as a backup generator at the Connecticut casino Mohegan Sun, after which it is named, the gently humming Mohegan-2 will turn in a performance that any conventional generating plant would be hard pressed to match: it will derive energy from fuel without burning it, turning out 200 kilowatts of electricity, usable heat, and water of a purity that no mountain spring could match while only producing a modest amount of carbon dioxide. Most impressive of all, over time it very well may be able to do all this almost as cheaply as-and more reliably than-conventional power plants.

Mohegan-2, along with a host of similar hydrogen-fueled power stations now jumping from long research and development efforts into the commercial arena, could be ushering in the age of the fuel cell. Fuel cells, which electrochemically wring energy out of hydrogen, are as quiet, clean and mechanically simple as a battery but as easy to refuel as an internal-combustion engine. Long ballyhooed by many as the inevitable successor to gas-guzzling, pollution-spewing car engines, fuel cells have always been hampered by high manufacturing costs. But a growing number of companies are confident they are now on the verge of bringing prices for fuel cells down to levels where they can compete-if not with car engines, then with conventional electric-power generating equipment. If the market for such units takes off, that success could very well trickle down to the manufacture of other mass-market fuel cells for homes and even individual appliances. The resulting “hydrogen economy,” where nature’s most abundant substance replaces fossil fuels as the electricity elixir of choice, would eventually be one of vastly increased efficiencies and dramatically cleaner air.

Not that an upcoming hydrogen dynasty is by any means a sure thing. Besides a host of technical kinks that remain to be ironed out, there are also infrastructure challenges, such as how to make pure hydrogen available to consumers and where to get fuel cells serviced. There are even fundamental questions about the market potential of fuel cells-namely, will the public be willing to dump familiar technologies in favor of fuel cells that are likely to carry a price premium? Many experts believe it will. “After years of really intense research, we don’t see any roadblocks that we don’t know how to get around to converting our energy systems to fuel cells on a large scale,” says Kenneth Stroh, who heads fuel cell research efforts at Los Alamos National Laboratory in New Mexico. “We still have improvements to make, but if we can get them this will be a game-changing event.”

1 comment. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me