Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The Answer

One morning, I observe a meeting with scientists from a biotech company that might form a joint venture with Human Genome Sciences. Haseltine takes them on an Oracle tour. “We have more answers than you have questions,” he says at the outset.

As much bluster as Bill Haseltine pumps out, as combative and grating and self-serving as he may be, his company’s database speaks for itself. Haseltine begins scrolling through the endless DNA samples in the Oracle. He can look at a particular gene and see how it’s expressed in a six-week-old embryo compared to, say, an embryo that is nine weeks old. Likewise, he can compare the genes expressed in a fetal kidney with those from an adult’s, a healthy ovary to one riddled with cancer. He randomly selects a gene, jumps to a public database run by the National Institutes of Health, and finds a similar gene present in worms. Another click of the computer shows that the protein is secreted. Human Genome Sciences has done 69 different biological tests with the protein, looking at how it relates to everything from myeloid leukemia to immune-system cells. A diagram even shows the biological pathway within which the protein operates. “We’ve already patented it,” says Haseltine.

Haseltine decides to look at levels of the protein in an adult kidney. His company has found 583 genes that are expressed in kidneys, a full 363 of which have not been described in public databases. Of these, 52 code for secreted proteins, and 27 of those Human Genome Sciences has filed patents on. Haseltine decides to swing the Oracle in another direction and look for the most abundant gene in this kidney sample. It’s septin. “Who knows what septin is?” he asks. “Not me. We’re about to find out.” Septin turns out to be involved with blood clotting.

What does all of this mean to the discovery of new medicines? It is plain that Human Genome Sciences has built a jazzy new type of microscope that, as Haseltine says, offers a view of human anatomy that we’ve never had before. What is much less clear is when this knowledge will help humans lead longer, healthier lives.
Francis Collins, the researcher who heads the Human Genome Project for the National Institutes of Health, says scientists have to strive not to oversell the promise of genomics. “I have no doubt that in 50 years, much of medicine will look entirely different, and much of that will be because of genomics,” he says. “It’s a revolution unlike almost any other that’s happened since the discovery of antibiotics. But we have to be honest with the press and the public and ourselves that the timeline is longer than we wish.”

Haseltine, in contrast, hears the wheels of a caravan turning and the faint sound of dogs barking in the distance.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me