Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Compared with other biotech startups, Human Genome Sciences had an inside edge as a result of its unusual relationship with a nonprofit outfit headed by J. Craig Venter. Venter left the National Institutes of Health because it refused to back a shortcut he had developed to sequence the genome, and in 1992 he signed a deal to join Haseltine in an elaborate business venture. Venter headed up the new Institute for Genomic Research, which sequenced DNA, while Haseltine ran for-profit Human Genome Sciences, which bought the institute’s data and marketed it to pharmaceutical companies.

However, the two men’s goals were as ill matched as their personalities. Venter wanted to publish data that Haseltine believed was proprietary. And soon Haseltine thought better of spending $10 million a year buying data from Venter’s firm; Human Genome Sciences, he decided, could set up its own in-house sequencing shop and do the job more cheaply. In 1997, Venter and Haseltine formally severed their business ties. To this day, the men continue to engage in what Haseltine’s sister Florence, herself an official at the National Institutes of Health, refers to as a “pissing match between alligators.”

While Venter went on to cofound Celera-a company that, in June 2000, at the same time as the Human Genome Project, completed its own draft of the sequence-Haseltine became an outspoken critic of these massive sequencing efforts. Indeed, he has taken a view contrary to much of the conventional wisdom surrounding the Human Genome Project, including the growing consensus that humans may only have 30,000 to 40,000 genes-not the 100,000 that most scientists had previously predicted.

Haseltine, true to form, insists that a serious case of groupthink plagues the field. He still maintains that humans have at least 100,000 genes and might even have as many as 120,000. Haseltine knows this because, he claims, his company  already has 90,000 distinct genes frozen away. “Why did they miss these?” Haseltine asks. “Because they decided genes have to have some similarity to known genes.” And the majority of the genes Human Genome Sciences has in its freezers, he says, “have virtually no similarity to anything found before.”

Human Genome Sciences has not published evidence to support these controversial claims, but the multitude and variety of whirring machines that continuously feed data into the Oracle make it difficult to dismiss Haseltine out of hand. His company has spent the last eight years sequencing genes, intensively studying the proteins they code for and simultaneously identifying potential drugs; other firms tend to have much more circumscribed goals. So Haseltine’s real redemption will come if he fulfills his promise to use the database to turn out actual, life-saving drugs. His company is focusing on the 10,000 genes that it knows code for proteins found on the outsides of cells, so-called secretory proteins that include hormones, receptors, immune-system messengers and enzymes.

So far, his company has moved five drugs into human trials that, if they work, may speed the healing of wounds, make cancer treatments less toxic, allow people with heart conditions to avoid bypass surgery, treat hepatitis C and spare the limbs of patients who otherwise would need amputations. By the end of the year, the company hopes to move at least three more new drugs into human clinical trials. And in July, the company reached the end of its commitment to provide GlaxoSmithKline access to the Oracle, creating even more exclusive opportunities for itself. “We are like kids in a candy store,” says Haseltine.

Outside of GlaxoSmithKline and Amgen, the world’s largest biotech company, no one else has yet used genomics to bring a drug into the clinic, says Haseltine. In his judgment, many scientists, in both industry and academia, simply don’t understand how to mine the human genome for drugs, wasting time on regions of the genetic map that Haseltine has already dismissed as worthless. He says he has “a deep concern” about what the Human Genome Project will mean for people. “So far, it’s a mixed blessing at best,” he says. “The gene, for my purposes, is part of an anatomy.Human Genome Sciences is going to redefine human anatomy. We’re going to take it to a new level of resolution.”

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me