Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Every time a signal runs through an erbium amplifier, however, it picks up noise-elements that were not a part of the original signal. Over long-distance backbones where a signal needs to be boosted many times, fiber-optic systems must be strung with regenerators, devices that reconstruct signals that have traveled through so many amplifiers that they have degraded. Regenerators take a light signal, convert it to an electrical signal, and then produce a new light beam.

A new technique called Raman amplification (see “Five Patents to Watch: Booster Shots,” TR May 2001) will allow a signal to be amplified without introducing noise-doing away with the need for regenerators and potentially creating a new way for engineers to increase capacity. Unlike erbium amplifiers, which only work at certain wavelengths, Raman amplification holds the promise of making even more new channels available. A new company, Xtera, of Allen, TX, is hoping to take advantage of Raman amplification to enable the long-range transmission of shorter wavelengths of light than current optical networks can support. “It’s kind of a new twist on using Raman techniques,” says Joe Oravetz, Xtera’s product manager, who unveiled the company’s first new product at the Optical Fiber Communication Conference and Exhibit in March in Anaheim, CA.

But using the shorter-wavelength band is a decidedly long-term strategy, since it will require installation of new equipment at every point in the network. “Going into a new band, you have to replace all the components,” says Vladimir Kozlov, an analyst at RHK. “You need new sources. You need new amplifiers. It could be very expensive.”

Speeding Up Bits

An alternative to adding channels is to make the data stream in each channel flow faster. Just as the modems in people’s homes have gotten faster, transmitters in the backbone have increased their ability to pump data, from 100 million bits per second a decade ago to a state-of-the-art 10 billion bits (10 gigabits) per second today.

While AT&T issued a press release announcing the first 10-gigabit-per-second coast-to-coast Internet protocol backbone in January, it’s already old news: 40-gigabit-per-second systems have already been announced by Lucent Technologies, Fujitsu and NEC for sale later this year. The engineering feats involved in advances like these are tremendous: increasing the data rate required engineers to design lasers that can reliably flash on and off 40 billion times per second, and receivers that can pick out one flash from the next, when they’re coming at that overwhelming rate.

0 comments about this story. Start the discussion »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me