Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Beating the Air Raid

The prospect of designing a winning broadband mobile architecture has attracted legions of ambitious technologists. The question remains, however, whether they can ever supply enough real communications power-remember Claude E. Shannon-for you to check out that CNN clip as you walk around downtown. Rather than trying to rev up the cell-phone network to deliver a broadband Internet, perhaps we are better off with parallel systems, one for phone (which already exists) and one for data (under construction).

“There’s really no big reason why the good old cell-phone system should survive or thrive as the wireless Internet,” says Teresa H. Meng, a groundbreaking wireless researcher at Stanford University who is now chief technology officer of wireless-chip maker Atheros Communications. Instead, Meng says, telecom companies could place wireless data transceivers on every building and utility pole. Each transceiver would cover a small area, or “nanocell,” ranging 200 to 300 meters in diameter. Together they would create what Meng calls a “wireless fabric.” Because the transceivers would be so close to users, they could send clear, high-speed wireless signals over narrow bandwidths, at frequencies that fall into the industrial/scientific/medical” portion of the spectrum, which regulators make available free and is used by cordless phones, garage-door openers, medical instruments and factory machinery. And handsets could get away with low power output, conserving batteries.

In tests at its Sunnyvale, CA, labs, Atheros’s chipsets are reaching data rates hundreds of times faster than desktop modems-true broadband. Not burdened by having to carry voice, they can be far speedier than 3G schemes, which supply voice and data together. Meng also says, “The data communications industry has the upper hand. Because the cell-phone industry is heavily regulated and totally standardized, improvement has been made very incrementally-as in 3G versus 2G. Those technologies are 15 years old.” Even some cell-phone pioneers, like Martin Cooper, who developed the first portable cell phone at Motorola in the early 1970s, agree that a dual system might be more practical than 3G (see “Everyone is Wrong,”).

Blanketing our towns with nanocells may seem far-fetched, but Meng insists it would cost less than acquiring pricey 3G spectrum. Chip Elliott, principal scientist at Verizon’s BBN Technologies, concurs. He estimates that a network covering a large city would require $20 million up front in equipment, plus $5 million in annual network costs. Not bad, considering that the 3G spectrum for New York City alone was auctioned for billions of dollars, and the required system upgrade will add much more to the cost.

Freed from voice, data-only systems could provide a quicker, easier path to inexpensive, broadband Internet service, perhaps even that streaming CNN video on the street corner. Indeed, Metricom’s commercially available Ricochet mobile data-only service already operates twice as fast as desktop modems. Technologists are testing much faster data-only schemes, too. The consensus is that Orthogonal Frequency-Division Multiplexing, a format currently used to transmit high-definition television in Europe, could provide the best option. Rajiv Laroia, chief technology officer at Flarion, a leading commercializer of the scheme, says his company will offer equipment later next year.

0 comments about this story. Start the discussion »

Tagged: Web

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me