Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

This finding helped catapult the technology into prime time. Burroughes and his professor, Richard Friend, formed Cambridge Display Technology, which established itself alongside Kodak as a key player in the race to commercialize organic light-emitting diodes. Although these pioneers had the field to themselves briefly, they’re not alone anymore. David E. Mentley, a senior vice president with San Jose, CA-based market research firm Stanford Resources, estimates that some 90 other companies have since joined the fray. These include giants Philips, DuPont and NEC, as well as startups eMagin and Uniax, a Santa Barbara, CA, firm founded on technology from Nobel laureate chemist Alan Heeger (DuPont bought the company last year). Some license the Cambridge polymer technology; some follow Kodak’s small-molecule lead; some pursue their own variants. Whatever the strategy, a savage battle to commercialize organic light-emitting diodes is underway (see “Global Race for a Better Display” sidebar).

The reason for all this activity is straightforward: the more they are studied, the more organic light-emitting diodes look to be just about everything their liquid-crystal counterparts are not. For starters, their structure is about as simple as one could imagine: an electrode, some organic stuff, then another electrode. Hook it up to a voltage and, presto, out comes light. There’s no backlight, no diffuser, no polarizers or any of the other baggage that goes with liquid crystals.

Such simplicity should translate into a manufacturing process between 20 and 50 percent cheaper than liquid crystal display processes. It also means a thinner and lighter screen with far lower power consumption: backlights in conventional screens are a major drain on laptop batteries. In addition, organic light-emitting diodes shine much brighter than their conventional rivals and are visible even in daylight. In short, enthuses analyst Mentley, “They have all the ideal features you look for in a display.”

These impressive qualities have sparked a flood of gushy predictions about potential applications for organic light-emitting diodes that range from a new generation of affordable wall-hung TVs to highly flexible displays that can be rolled up and carried around like newspapers. It’s still too early to evaluate most of these uses, which hinge on clearing formidable engineering hurdles. But there is one arena where the technology is ready to have immediate impact: cell phones.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me