Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Every year, thousands of tourists flock to the California coastal city of Long Beach, the last resting place of the ocean liner Queen Mary-a notable showcase of what was once state-of-the-art technology. But for a select group of visitors last May, the city’s main attraction was not a memento of the past but a technology of the future: a dime-thin sheet of glass 14 centimeters along the diagonal whose unparalleled ability to exhibit ultrabright colors and process high-clarity video images holds the potential to have far greater impact on the world than any single ship, no matter how splendid.

Based on a technology called organic light-emitting diodes, the prototype screen was unveiled by Eastman Kodak and Sanyo Electric at the annual conference of the Society of Information Display, the industry’s top professional group. As the screen was put through its paces, running images from video cassette, DVD and digital tape, even grizzled veterans of the flat-panel industry who packed into the Kodak booth came away goggle-eyed. Little wonder. Organic light-emitting diodes are shaping up as a superdisplay: brighter, thinner, lighter and faster than liquid crystal displays. They also take less power to run, offer higher contrast, look equally bright from all angles and have the potential to be much cheaper to manufacture than their conventional counterparts.

These advantages, especially the ability to handle video, give the upstart technology the inside track to become the screen of choice for the coming third generation of mobile phones. About to debut in Japan, the third-generation standard seeks to spur the production of phones that are aimed at eyes as well as ears, by giving them the ability to handle high-speed video over the Internet. These wireless Web phones are expected to quickly become a multibillion-dollar global business. But that may be only the start for organic light-emitting diodes, which are threatening to challenge the 30-year hegemony of liquid crystal displays in a broad range of portable electronics.

This promise has fired the imaginations of scientists and engineers and spurred a worldwide race to develop the technology that pits startups against heavyweights such as Kodak and Sanyo. Difficult problems remain to be solved before the promise can be realized. But the potential is too great for some savvy technology companies to ignore. Notes Dalen Keys, chief technology officer of DuPont Displays, the chemical giant’s spinoff that is out to win a big share of this emerging market, “We are trying to achieve a complete change of the paradigm of what is a display, and the cost of the display.”


0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me