Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The product demonstration room at Immersion Medical in Gaithersburg, MD, is a veritable arcade of medical simulation. There you can find a lineup of electromechanical, sensor-riddled, computerized devices, all coupled to virtual models of the human body. With these gadgets, students can practice the routine task of inserting a catheter into a patient’s hand, or more difficult procedures like a colonoscopy or even a lung biopsy. But these simulators don’t just provide vivid computerized visual renderings of human innards. They also re-create something equally critical: how all the injecting, cutting, inserting and palpating actually feel to the doctor performing them.

Here and in other corporate and university labs, computer simulation experts-having largely mastered visual displays and digitized sound-are demonstrating an increasing mastery over a third sensory frontier: touch. Their specialty is known as haptics, after the Greek haptikos, meaning to grasp or perceive. While the technology is still most widely known as the rudimentary shuddering of a video game joystick, more sophisticated versions are well on their way to enhancing basic medical simulation training.

Future haptic applications may even enable doctors to perform surgery over the Internet. Beyond medicine, haptics has also emerged as a tool for creating “touchable” 3-D models in the virtual world, and for conveying bumps and vibrations on the common computer mouse-you’d “feel” the icons on the screen (see companion article “Touchy Subjects”). But the technology is having its most palpable impact as an emerging tool for training doctors and nurses without risk to patients. “Haptics is a huge part of providing a realistic [medical] simulation experience,” says Gregory Merril, Immersion’s 32-year-old founder and self-described chief visionary officer. “When doctors are interacting with patients, a lot of it is the sense of touch.”

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me