Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Did Anyone Say “Skycar”?

What will it cost to fly all this technology? Less than it costs to operate a mid-range BMW, according to the Small Aircraft Transportation System goals. That’s not cheap, of course, but it’s about half of what it costs to fly a slower, less reliable, far more difficult-to-operate plane today. What’s more, Highway in the Sky systems and other easy-to-use technologies are expected to save at least 40 percent of the roughly $5,000 cost of getting a basic license today-and a like percentage on the nearly $5,000 more needed to obtain a rating for low-visibility flying.

Indeed, the emerging panorama of aviation advances raises the tantalizing possibility that planes could fly themselves, without requiring a trained pilot on board. Hansman, for one, sees that as a literal no-brainer. “With Highway in the Sky, a human pilot just acts as a meat servo,” he says. “An autopilot could do it just as easily.” In fact, autopilots are fairly standard equipment on most aircraft today-it’s just that pilots usually have to hand-program the course and altitude information. What’s more, because today’s small-aircraft autopilots lack the top-notch reliability and precision needed to faithfully execute the stream of minute, rapid attitude corrections usually made in the critical seconds before touchdown, the FAA won’t certify them for landings.

All that may be changing, however. Cirrus’s Vogel contends that the eventual availability of “fly-by-wire” systems-that is, setups in which a computer oversees all aspects of a plane’s controls-will provide the refinement needed to enable auto-landing. “It’s going to be a while before we see planes where you just punch in your destination and sit back-maybe decades,” Vogel admits. Still, he insists, that day is coming.

In the meantime, small planes should be able to at least provide backup piloting in the case of a serious mistake or other emergency, notes Dan Schwinn, president of Avidyne, a Lincoln, MA, avionics manufacturer also working on Highway in the Sky systems. “In cars you have traction control and antilock brakes, which prevent driver errors or get you out of trouble if you make one,” he explains. “In airplanes you could have controls that prevent the pilot from overbanking at slow speed, or that flip you back over if you’re inverted by severe turbulence.”

How far will the quest for high-performance, easy-to-own-and-operate personal aircraft take us? Perhaps as far as the Skycar, an outrageously ambitious machine under development by Moller International in Davis, CA. The Skycar, which currently exists only as a prototype-in-progress, looks something like a cross between a race car and a tiny jet fighter. On takeoff, the blast of air from four large “power pods,” which contain counter-rotating Wankel engines attached to turbine blades, is directed downward by louvers, theoretically allowing the Skycar to lift straight up-no runway necessary.

After reaching a safe height, the power-pod louvers slide back up, accelerating the vehicle straight ahead to around 500 kilometers per hour. The pilot has a pair of joysticks-one for vertical motion, the other for direction-but in essence these only serve to signal the pilot’s intentions. The actual control is handled by 26 computers that assess the aircraft’s position and attitude and monitor 72 components as often as 100 times a second. What’s more, the Skycar is narrow enough to be driven down the road on its three wheels; it even fits in a two-car garage. Projected cost in volume production: less than $100,000. Moller has already taken deposits on early production versions, expected to go for about $1 million each, but buyers will have to stand in line behind the U.S. Army, which is gaga over the machine. “We just hope the U.S. Army is the first army in the world to get these capabilities,” says Colonel Larry Harman, vice director of the Combat Service Support Battle Laboratory in Ft. Lee, VA.

Okay, so it’s a little early to start marking off the backyard landing strip. But any dramatic improvement in the safety, ease of operation or cost of small planes will translate into a jump in the number of private pilots-which will help justify the investment necessary to bring on yet more improvements. In this way, we may soon find ourselves in a golden era of personal aviation, in which hopping into the family aircraft to eat at a restaurant 500 kilometers away will seem less adventurous than a 50-kilometer automobile jaunt did a century ago.

0 comments about this story. Start the discussion »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me