Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Whether or not the University of Rochester deserves royalties from every Cox-2 inhibitor on the market, the surfacing of more and more genetic submarines could signal a painful future for drug development. All existing drugs on the market act on only about 400 distinct targets in the body; these are the critical enzymes and pathways that can be addressed in treating various diseases. And scientists’ best guess is that there may be only 5,000 “druggable” targets overall. As they reveal these targets, companies and universities are laying claim to what amounts to the ultimate biological monopoly-patents that comprehensively cover not only a gene and the protein it makes, but also any “method of treatment” that specifically targets them. Already, Pfizer has a patent in Europe covering any drug that acts via PDE5, the protein targeted by Viagra.

At Millennium Pharmaceuticals, such “methods of treatment” claims are what Mark Boshar calls the “crux” of his company’s patent strategy. Millennium has dozens of such claims pending at the Patent Office, including several on human obesity genes that could be the basis for a new generation of diet drugs. According to Boshar, these patents are a just reward for innovative research that is uncovering the true molecular causes of disease for the first time. The only type of protection broad enough to protect such a fundamental insight, he says, is one that renders the target “locked up and protected… regardless of the drug that our competitor develops.”

Few patents are likely to be as wide-reaching as the one on the Cox-2 gene. In fact, the majority of gene patents, just like most new golf ball designs (another popular category at the Patent Office), will end up being worth little or nothing. However, the sheer number of pending patents could present its own problems. In a 1998 paper in the journal Science, Rebecca Eisenberg and Michael Heller, a University of Michigan colleague, warned that a proliferation of early-stage intellectual property rights could end up stifling lifesaving innovations. For instance, drug companies might shy away from working in a particular area because it’s strewn with overlapping claims on basic scientific building blocks.

One way around this problem would be for companies to share their patents to make new drugs possible. That’s what’s happened in the computer industry, where PCs make use of hundreds of patents, held by a wide array of different inventors. But Iain Cockburn, an economist at Boston University, says that despite the attractive nature of such sharing, particularly where human health is concerned, it may be hard to achieve in biotech. “The nature of the biotech industry is the potential cause of some problems. There are a lot of small, hungry companies out there whose only asset is intellectual property. It’s less likely that broad cross-licensing agreements can happen. If you have too many people owning small, overlapping slices of the same pie, there could be a breakdown.”

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me