Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

TR: When you introduce a new function like conferencing, for example, what demands does it place on the network?
LEIGHTON: How are you going to implement it? How are you going to integrate it into this massive distributed platform? How are you going to maintain it for thousands of customers? You have thousands of customers and hundreds of millions of people accessing those customers, and we’re sitting in between. And it all has to work by itself. You can’t be monkeying around. Delivering conferencing sounds simple. But it’s not so simple when you’re talking this kind of scale. When people think about streaming they think of a single source where the content comes from, and then it branches out in a tree through the Internet. Those places can break down and then all those people downstream are out of luck. We’ve developed an entirely new way of going about it so that there’s no critical point of failure. If the source dies, then you’re stuck. But once [the content] is out of the source, we replicate it and spread it throughout the system. So, it’s not a tree.

TR: What does it look like?
LEIGHTON: It’s hard to describe. The way to think about it is that between the source and destination, you have multiple transmissions going on such that you can lose content on those paths; you can have packet loss on any or all of them, but at the endpoint you have enough information coming in from those locations so you can reconstruct the signal. So, if something gets killed along the way, such as a path gets killed, nobody’s affected.

TR: We’ve all experienced frustrations with videostreaming. In terms of the technology, what will it take to make it more reliable? When will we be able to watch webcasts as easily as TV on a full screen?
LEIGHTON: In order that videostreaming be more reliable, you need a content distribution service to deliver the bits reliably to the edge of the network, and then you have to have a reliable last-mile connection to the Internet. If you want high-quality video, then you better have a high-bandwidth connection to the Internet. It will still be some time before you can get TV-quality videostreams on a widespread basis.

We’ve demonstrated a megabit-per-second live stream. In fact, just recently we carried thousands of one-megabit-per-second streams to live customers accessing a conference keynote address by Steve Jobs [CEO of Apple Computer]. This is a major milestone for the Internet. With that technology you get a very high quality videostream. If the last mile is broadband, then you’re all set to go. One thing we’re working on is bandwidth profiling. The idea is to automatically detect the bandwidth of the last mile. Does the client have a broadband connection, a 28K modem, or is it narrow band-a cell phone or something? Then we deliver the content as a function of that. So if you detect that the client has high bandwidth, they get the high-bandwidth version-the streamed version as opposed to the static version. Or in the case of narrow bandwidth, you get a printed version as opposed to the graphics.

TR: The very nature of the Web seems to be changing with such functions as videostreaming and conferencing. What will Akamai be working on in five years? What do you think the Internet will be like then?
LEIGHTON: Things move so fast, it’s really hard to predict. People who try to predict end up eating their words. I think we’re just at the beginning of the Internet revolution. I don’t think we’ve even begun to think of all the things that we can be doing on the Internet. I can’t tell you what will be the hot service five years from now. I don’t know. I would hope by then that, for example, the quality of streaming is much better. That it’s part of daily life. At the least, I would expect the typical Web experience to become richer, more efficient and more reliable than it is today.

TR: You are seen by many as a model of an academic making it big as an entrepreneur in the new economy. What do you tell those looking to emulate your success?
LEIGHTON: I never had an aspiration to be an entrepreneur. I love academics and co-founded Akamai because we felt it was the best way to transfer our technology from a research environment into practice. It felt really nice to be taking technology, especially technology out of a university, and making a difference with it. That’s probably the biggest reward. It often takes 10 to 20 years for a technology in a university to really manifest itself in practice. And this time we’re able to decrease that time dramatically. I’m perfectly happy writing a paper that only five people read. Pretty smart people will read it, and I get a kick out of that. It’s what I spent all my life doing. But this is something with a chance to make a difference.

TR: Do you ever miss the days when, as you put it, you spent your time writing papers that maybe five people were able to read and understand?
LEIGHTON: Yes, although I don’t have much time to think about it.

0 comments about this story. Start the discussion »

Tagged: Web, Akamai

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me