Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

By next year, biologists are scheduled to finish sequencing the entire set of human genes. The Human Genome Project has been a mammoth endeavor involving thousands of scientists and billions of dollars. But for Peter Schultz, the real fun-understanding how all those genes function-is just beginning.

Last year, Schultz quit as chemistry professor at the University of California, Berkeley, to start up the Genomics Institute of the Novartis Foundation at La Jolla, California. The purpose of the $250 million institute, funded by the Novartis Research Foundation (a Swiss foundation with close ties to pharmaceutical giant Novartis) is to elucidate the biological meaning of the hundreds of thousands of genes detailed by the genome project. The work of assembling that puzzle is known as functional genomics, and Schultz leaves no doubt that he expects his institute to lead this race to understand, molecule by molecule, how the human body works.

Coming from most people, that would sound like idle boasting. But Schultz has the track record to back it up. Part entrepreneur, part research administrator, part organic chemist, Schultz has always been intent on turning lab advances into real-world technologies. Starting in the late 1980s, he was one of the pioneers of “combinatorial chemistry,” a collection of techniques for rapidly generating huge numbers of compounds and screening them for specific kinds of activity. Many researchers would have been content to stop there.

Not Schultz, who played a pivotal role in turning this seemingly esoteric advance into a revolution in the search for new drugs and materials. Affymax, a combinatorial chemistry startup Schultz helped found in 1989, has changed the way pharmaceutical companies hunt for new compounds, while Symyx, which he co-founded in 1995, has used similar combinatorial technology to revolutionize the discovery of electronic materials and catalysts (“Winning Combination,” TR May/June 1998). In his latest incarnation, Schultz plans to use some of these same chemistry tricks to understand everything from human cognition to human development.

In his office by 5:00 a.m., Schultz maintains a hectic schedule. In addition to heading up the new genomics institute-which began operations last summer-Schultz serves as a director of several startup companies and maintains his presence in academia by running a 40-member lab at the Scripps Research Institute. Senior Editor David Rotman caught up with Schultz early one morning to hear about his plans for the institute and the increasing role of chemistry in biomedical research-and to get an update on the effort to put together the vast jigsaw puzzle of human genes.

Pages

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me