Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

On a cold day in late 1998, Jim Jatich, 51, sat at a table in Cleveland, Ohio’s MetroHealth Medical Center and donned a cloth beanie with dozens of wires protruding from its surface. He had been practicing twice a week over several months for this moment, and he was so intent on the task at hand that the magnitude of it didn’t sink in until he emerged from the hospital later in the day.

“That’s when it hit me,” he recalls. “I got tears in my eyes, turned to my sister, and said, ‘Damn, I actually moved my hand by thinking about it.’”

Jatich is a quadriplegic who lost the use of his hands and legs in a swimming accident 21 years earlier. But in a series of first-of-a-kind experiments that hold out the promise of a more normal life for the handicapped, researchers led by biomedical engineer P. Hunter Peckham of Case Western Reserve University have succeeded in re-establishing the damaged connection between Jatich’s brain and body. Their strategy: combine two cutting-edge technologies into a system that uses brain waves to move paralyzed limbs.

Pages

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me