Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Free Flight Lite

While Baiada waged his lonely crusade, the FAA’s Flight 2000 scheme crashed and burned, thanks to lack of industry (and, consequently, congressional) support. Now two projects, each on a much smaller and more conservative scale, are rising from the failed plan’s ashes (see “The Technologies Behind Free Flight” table). Ironically, each one puts into practice the ideas of one of the two allies-turned-antagonists, Cotton and Baiada.

One of the two current efforts, known as Safe Flight 21, incorporates two trials of the avionics approach pioneered by Cotton. In a slice of the original all-Alaska test bed, small planes-which fly outside of ground control-will use the Flight 2000 technologies in an attempt to improve safety. Safe Flight 21’s other component tests the same avionics in an interesting new sector: air cargo companies.

Because cargo companies haven’t had to install TCAS (as passenger carriers have), they are particularly interested in one technology under study in Safe Flight 21 that might provide an even better collision-avoidance solution: Automatic Dependent Surveillance Broadcast, or ADS-B. This system transmits position, identification, velocity and direction information from cockpit to cockpit and cockpit to ground. And it doesn’t hurt that United Parcel Service (UPS) has backed the project as both a user and supplier of the new technology: Its subsidiary UPS Aviation Technologies makes the ADS-B units being tested.

ADS-B performed well in initial Safe Flight 21 tests this summer. And though ADS-B hasn’t yet been proven as an avoidance system, UPS Airlines spokesman Ken Shapero is confident it will be: “Eventually, passenger airlines will want ADS-B for collision avoidance. It’s like digital versus analog cellular phones.”

By leapfrogging over TCAS (an analog system with relatively short range) to digital, wider-range ADS-B, with its richer store of data, the carriers hope to get collision avoidance and much more. How much more? Maybe free flight, someday; UPS is driving to make ADS-B free flight’s base technology. “If we get the technology in place, then we can figure out applications,” argues Shapero. “The FAA failed with some Big Bang programs for which no technology existed, then tried to make the technology work.”

The other current free flight initiative, Free Flight Phase 1, is a streamlined approach that happens to follow the same principles Baiada urges-act now, without waiting for any more newfangled technologies to come online. This scheme was prompted partly by the failure of the grander free-flight scheme. In mid-1998, the FAA was desperate to chalk up a success and show its commitment to modernization under a new administrator, Jane Garvey. “The industry and the agency got together and realized they needed to bring out something quicker, sooner, better,” says Free Flight Phase 1 assistant manager Robert Voss, echoing NASA’s “faster, better, cheaper” mantra.

Thus was Free Flight Phase 1 born in July 1998, with a substantial budget but a mission that seemed drafted to defuse fears of over-reaching: “To introduce modernization into the national air system incrementally-taking a building block approach to fielding new systems to provide benefits to users as soon as possible.” Forget the fancy avionics; Free Flight Phase 1 would deploy software capabilities already available or in development to streamline ground-based control.

The Technologies Behind Free Flight

Technology Function Source Included in Safe Flight 21: Automatic-Dependent Surveillance Broadcast (ADS-B) Improved separation, “see and avoid,” taxiway navigation, surveillance in nonradar air space, perhaps collision avoidance UPS Aviation Technologies Datalink transceiver Digitized radio communications Honeywell, UPS Aviation Technologies, or Aviation Data Systems Innovation Traffic Information Services-Broadcast (TIS-B) Broadcasting traffic, weather, and other data from the ground to the cockpit Undetermined; planned for year 2000 Cockpit Display of Traffic Information (CDTI) Displays ADS-B and TIS-B data, controllers’ instructions UPS Aviation Technologies Global Positioning System (GPS) Navigation, location UPS Aviation Technologies (receivers) Digital terrain database with moving map Crash avoidance UPS Aviation Technologies Included in Free Flight Phase 1: Center-TRACON Automation System (CTAS) Suite of automation tools for airport-approach and en-route control centers NASA Ames Research Center User-Request Evaluation Tool (URET) Conflict probe Mitre Collaborative Decision Making (CDM) Real-time exchange of scheduling data and changes by airlines and air space managers More than 50 airlines, federal agencies, universities, research and industry organizations participating Controller-Pilot Data Link Communications (CPDLC) Limited ground-air digital communications FAA Surface Movement Advisor (SMA) Provides airlines with aircraft arrival information for better runway routing FAA

2 comments. Share your thoughts »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me