Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Brain Drain

While researchers at companies and universities are jumping on the data-mining bandwagon, they are likely to encounter plenty of bumps in the road ahead. Some investors, for instance, remain concerned that databases of different biological results are still poorly interconnected, and sometimes of uneven quality. Says Larry Bock, an investor at the Palo Alto office of the venture firm CW Group: “It may be a bit early for data-mining, since your ability to mine is directly related to the quality of the database.” Still, says Barbara Dalton, vice president at the venture firm SR One in West Conshohocken, Pa., “the long-term prospects look good.” SR One, along with Princeton, N.J.’s Cardinal Health Partners, anted up $2 million to finance Larry Hunter’s startup, Molecular Mining. “Data-mining is going to be a core part” of drug discovery, Dalton predicts.

But before that happens, the field may have to break its most serious bottleneck: an acute shortage of mentors. Bioinformatics has grown explosively during the 1990s, drawing many of the best university teachers and researchers into the high-paying private sector. “We went from very little interest in bioinformatics, to-Bang!-having most of the people working in companies,” says Mark Adams, who left the academic track to work for the Cambridge, Mass., biotech company Variagenics. With universities drained of some of their brightest minds, many wonder who will train the next generation of computational biologists.

Part of the answer came in June, when a special advisory panel convened by NIH director Harold Varmus concluded the U.S. government should spend as much as $10 million to fund 20 new “programs of excellence” in biomedical computing. Several universities have also gotten into the act, including Johns Hopkins, where a new computational biology program is under way, thanks to a $2.5 million grant from the Burroughs Wellcome Fund. Stanford, Princeton and the University of Chicago are all planning major centers that will bring physical scientists together with biologists.

In industry, the convergence is already reality. One-third of Rosetta Inpharmatics’ 100 employees are computational scientists, drawn from fields as diverse as sonar detection, air traffic control and astrophysics. Chief scientist Stephen Friend says he’s come to an important realization since joining the company in 1997. Biologists may still ask the best questions and design the most compelling experiments, he says, but “the best answers are coming from the physicists or mathematicians.” Those answers are likely to lead to important new therapies-gold extracted from the mountains of the Human Genome Project by the tools of pattern recognition.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me