Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

You hear Bernie Meyerson before you see him-a stream of words fired from behind his office door. Then the man steps forth: bushy mustache, curly hair, sharp eyes, a human whirlwind.

If there’s a poster child for IBM Research these days, it’s Meyerson. Bristling with energy and drive, he makes things happen-embodying the changes that are bringing the organization, once a hallowed name in R&D, back from its near-death experience of the early 1990s. When IBM officially dropped a long-unfruitful line of semiconductor research, he conspired with a few key managers and colleagues to go underground, borrowing equipment and calling in chits to keep his project alive. Today, the novel silicon-germanium technology his team invented is delivering processors for cell phones and communications networks with lower power and double the speed of conventional rivals-leaving competitors eating IBM’s dust.

Befitting his new image, Meyerson occasionally sheds his lab vestments and dons a suit-he has two now-to hobnob with the establishment. He carries a new title, director of telecom technology, and oversees more than 100 people spread across research, design, development and production. He knows the semiconductor business, negotiates deals-and he’s in heaven. Meyerson’s answering machine holds myriad job offers. But he’s not budging. “I could have my own corporate jet and a huge staff and all that other nonsense,” he relates. “But it’s not what it’s about.” Instead, he’s taking an idea from nothing into a business IBM expects to hit $1 billion in sales in 2001. “Things like that,” Meyerson smiles, “you kind of live for.”

His employers agree. IBM is hoping new incentives and a fresh outlook that takes researchers into the field to meet customers will encourage more people with Meyerson’s entrepreneurial drive. It seems to be working. After a mid-1990s upheaval that saw the division knock some $120 million off its roughly $550 million annual payroll and scale back basic science, Research is turning around. The division has eclipsed its old budget, soared back to near its all-time high in personnel, with some 3,000 employees, and opened labs in Austin, Beijing and Delhi, making eight in all (see table “The World’s Largest Industrial Research Organization” below). Led by Research, IBM in 1998 won the most U.S. patents for the sixth year running.

What’s more, the rise of the Internet and the fusion of communications and computers play perfectly into decades of research-raw computing power, storage, chips, displays, speech recognition, “data mining” and electronic security-that few companies, if any, can match. Managers admit to some holes in their technological arsenal and struggle to woo talent, especially in the face of high-flying Internet startups. Still, the future seems bright and chairman Lou Gerstner showcases Research as central to IBM’s revitalization, which helped lift the stock market to record heights this spring. “It’s the best time to be in IBM Research perhaps in our history,” proclaims research director Paul Horn. “We had great thoughts, we had great things. But we never had the IBM Corporation maniacally focused on how they could get our stuff coming out there to the marketplace faster.”

The World’s Largest Industrial Research Organization

Lab (year established) Location Staff Core Areas Thomas J. Watson Research Center (1961) Westchester County, N.Y. 1,700 semiconductors, math, physical sciences, computer Almaden Research Center (1986) San Jose, Calif. 480 information storage, computer science, physical sciences Haifa Research Laboratory (1982) Haifa, Israel 280 applied math, computer science, multimedia, VLSI design verification Zurich Research Laboratory (1956) Rueschlikon, Switzerland 180 communications systems and technology, optoelectronics Tokyo Research Laboratory (1982) Yamato, Japan 170 software, computer science theory, networking, system technology Austin Research Laboratory (1995) Austin, Texas 40 advanced circuit design, microprocessor design techniques and tools China Research Laboratory (1995) Beijing, China 40 Chinese language and speech recognition, digital libraries Delhi Solutions Research Center (1997) Delhi, India 30 e-commerce, weather forecasting, deep computing, communications

In addition to this physical organization, Research is divided into five strategy areas that cut across geographical boundaries. Roughly equal in size and authority, the areas are: Services, Applications and Solutions; Computer Systems and Software; Telecommunications Technology; Storage Technology; and Systems, Technology, and Science. Increasingly, researchers form global teams that rely heavily on e-mail and Internet conferencing to converge on problems beyond the scope of operations at the individual labs.


0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me