Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Life on Mars

although power is clearly a challenge for a mars mission, as I moved from session to session and seminar to seminar, I began to see that there is another area that represents the core of the challenge-and it’s not really a technological problem. When the Apollo missions went for the moon, it was hardware that was most crucial-the rockets, the navigation, the crew control systems and even the rocks that were the mission’s goals. But with Mars as a destination, the focus kept falling on life.

For a successful manned mission to Mars, many different aspects of the meeting suggested, we must consider life on many scales. Microscopic nano-fossils may indicate past life on Mars, and will be a prime objective for exploration. At the level of medicine, we must determine how to preserve human health under flight conditions. In sociological terms, we will need to understand the proper mix of crew skills, and the proper crew organization for multiyear missions beyond the range of radio conversations.

Radio signal round trip time ranges from eight to 30 minutes, depending on how far apart Mars and Earth are at any given time, so today’s earthside frustration with playing voicemail tag will become the norm for Mars travelers. In a simple demonstration of a communications delay using banks of video recorders and periodically swapped cassettes, I organized an exercise in which attendees at a 1997 medical conference in Houston faced a simulated medical emergency on Mars. As actor-astronauts followed a checklist of responses to the crisis, the earthside medical team had to learn to anticipate the martian team’s needs and progress.

Amazingly, both the terrestrial and extraterrestrial teams adapted within an hour to the interplanetary rhythm, providing adequate questions and answers in a surprisingly efficient fashion. But the exercise only used a four-minute delay, and the scripted medical scenario was well defined. Future experiments will have to address more realistic delays and more unpredictable scenarios, as space planners prepare for the temporal challenge of Mars.

The communication challenges of the Mars mission also apply to the folks left behind on Earth. In the realm of politics and diplomacy, we must muster the national perseverance and international cooperation needed for such a long-term project. On the interplanetary scale, we should consider quarantine standards to protect Earth from any extraterrestrial life forms that might hitch a ride home from Mars. Finally, on perhaps the universal scale, I saw impassioned argumentation about the desirability of and the strategies for someday modifying the climate of Mars to make it more earthlike-in other words, to “terraform” it. Only a few of these issues were at all significant during the 1960s moon landings, but many of them would become critical to a successful human mission to Mars.

And that may be the key to securing government commitment to such a project, for such questions of life resonate on Earth, as well as in space. It seemed to me that a human Mars program-not just a one-time “flags and footprints” dash but a sustained sequence of expanding expeditions-could result in the same sort of broad-based technological invigoration that the Apollo challenges fueled 30 years ago. If designed properly, this bold project could accelerate innovative research also applicable to terrestrial problems, both known and as yet unknown.

But that was an argument for the politicians and the bean counters at the federal budget office. At the conference I was surrounded by people already persuaded, as I am, that the project is desirable, even urgent. And although Mars was not visible to the eye that week-it was just emerging from the sun’s glare in the pre-dawn skies-its image burned brightly in my mind. To me, in an inversion of everyday traffic rules, the red light in the sky signified “Go!”

0 comments about this story. Start the discussion »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me