Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

TR: What do you have in mind?
WHITESIDES: A phrase that I use is “micron-scale technology with the economics of newsprint.” For example, instead of buying a newspaper, you might buy a sheet of paper; the back side of it would be a battery, the front side of it would be a display. You read it, scroll to find reference works on it, see animated illustrations, and when you’re done, you throw it away. One of the things that we might be talking about in 10 years is how micron-scale electronics using new technologies has crept into all kinds of things. My belief is that almost everything-shoes, windows, children’s toys, grocery labels, shipping labels, credit cards-will have electronics in a few years.

TR: You often mention biology and natural systems. What does biology tell you about nanotechnology?
WHITESIDES: Biology makes all kinds of very functional small structures. Drexler talks about small motors; we’ve got a terrific example of a small motor in biology, which is the flagellar motor in bacteria. This motor really works very well, and it actually looks a lot like a motor. Can we either learn how to use these biological things in some appropriate way in our devices, or understand the principles of biology better and then learn how to embed these principles in non-biological systems? Another example is sensors. A lot of what’s done in any biological system is sensing. The retina, the nose, all of these rely on molecules that are nanoscale sensors. How can we use these ideas to build artificial eyes and noses?

TR: Does biology tell you anything about the challenges ahead?
WHITESIDES: We’re made up of a hierarchical set of structures and components. We have molecules at the nanoscale level collected into organelles, which are 10 nanometers to maybe 100 nanometers, collected and working collectively in cells, which then aggregate into tissues that become us. One of the issues in electronics is that we work only in two scales. Transistors and collections of transistors-and that’s the device. But to take full advantage of nano, we’re going to have to think about that full hierarchy of levels of structure.

TR: What are some of the larger lessons that your research in nanotechnology has taught you?
WHITESIDES: One is the notion that function is often hierarchical and prioritized. Molecules do certain kinds of things, objects that are 10 nanometers do certain different kinds of things, objects that are 100 nanometers do yet other different kinds of things. For complex functionality, one has to learn how to build from small pieces into large objects taking advantage of the unique capabilities of each. The second is that there are phenomena that are size-specific. One of the things that one does on any scale is to look for commensurability between the phenomenon that you’re looking at and the object. Whenever you see that the phenomenon and the structures have similar sizes, there are interesting things you can do. The third thing is that for the nanometer scale in particular there is no richer storehouse of interesting ideas and strategies than biology.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me