Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Factories in the fields

the first transgenic crops were planted on a large scale in the United States two years ago and have quickly taken root in the economy. This year, genetically altered plants will make up about 15 percent of the U.S. corn harvest, about 30 percent of the soybean crop and more than half of the production of cotton. This first generation was begotten through the relatively simple trick of inserting a gene from a bacterium into a plant to produce a single trait; the results of such work include corn and cotton resistant to specific pests, as well as crops that tolerate several types of herbicides.

While this modest genetic tinkering may seem something short of a biotech revolution, bioengineered crops have taken farmers by storm. “People are surprised at how important the first couple of genes have been,” says Anthony Cavalieri, vice president at Des Moines-based Pioneer Hi-Bred International, a leading seller of seeds and a business partner with DuPont. “And this is just the front edge. It could be fundamental to how the whole agricultural sector works.”

Indeed, the real payoff is expected to come over the next several years as plant biologists begin not only to insert more genes into plants but also to redraw the genetic blueprints-and redirect the metabolic pathways-of many common crops. The vision is to rewire plants into cheap production units that can grow everything from modified foods to human vaccines to commodity chemicals. The reward for engineering these “output” traits in plants? According to John Pierce, DuPont’s head of discovery research in agriculture, it could mean getting a piece of industrial and food markets worth $500 billion per year.

Even for giant corporations, these are not small potatoes. Monsanto, for one, is working on a high-solids potato, as well as canola and soybeans with modified oil content. One strain of canola, for instance, is rich in beta-carotene to combat vitamin A deficiency, which is still a problem in many developing countries.

During the next several years, DuPont expects to begin marketing seeds for modified-oil soybeans as well as high-sucrose soybeans. Working with its partner Pioneer, DuPont has a half-dozen biotech crops nearing commercialization and expects to introduce plants with several traits “stacked” together. The company is also working on high-protein and high-oil crops for animal feeds (about 80 percent of U.S. corn is fed to animals).

Food for humans and farm animals is big business. But an even more lucrative bounty could eventually come from growing biotech crops that make highly prized materials and industrial products right in the plant. Why make synthetic dyes for cotton using highly toxic chemicals, the thinking goes, when the plants themselves could be genetically engineered to produce colored fiber? Why not turn plants into chemical factories?

Plant biologists at Monsanto and a Cambridge, Mass., start-up named Metabolix are separately working on a plastic grown in plants that could be ready for farmers as early as 2002. Prodigene, a two-year-old College Station, Tex., spin-off from Pioneer, is already selling industrial enzymes grown in transgenic corn and is developing other protein-based industrial products. Other labs are attempting to create plants that produce specialty oils that could serve as novel industrial ingredients for coatings and lubricants. Also on the drawing board are plant-based edible vaccines for diseases such as hepatitis and diarrhea.

“By tinkering with the control and activity of genes, you can make just about everything in plants,” says David Wheat, a longtime plant biotech consultant and president of the Boston-based Bowditch Group. “By understanding how an organism works at a molecular level, you can design new kinds of products-maybe even make products you’ve never seen before.”

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me