Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

High Impact

It’s true that “basic” science studies are less numerous than they were in the past and have been scaled back in scope to match more closely areas of core competency-such as lasers, optical communications and materials research. However, the lab is still a place where people from different disciplines mingle in the halls and share ideas through seminars, forums and lectures. And it still harbors an enviable program of over-the-horizon pursuits.

A study of high-impact research papers by Philadelphia-based ScienceWatch showed that in the physical sciences Bell Labs led the world from 1990 to 1997 with nearly 19,000 citations, easily outpacing the 13,020 of runner-up IBM, as well as the world’s top academic institutions. “The science there is in the first rate,” says Tomihiro Hashizume, a specialist in atomic scale structures who worked at Bell Labs before joining Hitachi’s Advanced Research Laboratory in Hatoyama, Japan. The Japanese firm’s impressive 13-year-old institution is dedicated largely to basic science. However, says Hashizume, “I think we have to be a little bit smarter to be Bell Labs.”

Lucent supports scientific studies for several reasons in addition to gaining a direct competitive edge. One is to create a climate of discovery that attracts top scientists who raise research standards and provide bridges to critical university investigations. Basic research can also act as a broad-based insurance policy, since targeted work naturally focuses on areas that are visibly important-and the future will always hold surprises.
Research is aligned into three divisions that cover a gamut of hardware and software relating to communications: Communications Sciences, Computing and Mathematical Sciences and Brinkman’s Physical Sciences and Engineering. All three sustain well-chosen fundamental work. However, when it comes to the lab’s hallmark studies in areas such as solid-state physics, most long-range fundamental investigations take place inside the Physical Research Laboratory run by Cherry A. Murray, part of the Physical Sciences and Engineering division.

Staffed by about 140 researchers, the lab’s activities span physics, materials science, chemistry, computer science, biophysics and astrophysics. Nearly half the efforts look more than 20 years down the road-with virtually all the rest spanning 5-to-10-year horizons. The hope is that all will ultimately bear fruit. In the meantime, it’s expected in the new climate that researchers should be ready, willing and able to bring their expertise to bear on more pressing problems that might arise. Even within this framework, however, there is a striking variety in how closely related the research is to business objectives-as three examples show.

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me