Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

“It requires a different skill set than science,” says Lita Nelsen, director of MIT’s Technology Licensing Office. “There are a few people who have both skill sets, but not many.” The increasing supply of venture capital dollars and corporate investors looking for hot technologies means growing business opportunities for university scientists. Nelsen says, however, that scientists frequently focus exclusively on the financial aspects of a deal when “they actually should be looking for more than money. Money is available. They should be looking for wisdom that goes along with it-wisdom to know what to do in judgment situations like when the chief executive isn’t working out, or when someone is infringing on their patent.”

Academic researchers face a number of difficult decisions, as they try to guide their technologies out of the lab into the business world. They could, for example, simply license their patent and move on with their research. Alternatively, they could enter into a collaboration with a company that could provide the marketing and manufacturing experience the scientists lack. Finally, they could try and find funding for a startup company of their own.

Each option has pros and cons. Whatever their decision, Poehler and Searson say they plan to stay at their academic jobs and let businessmen run any company. Licensing the technology to an established battery company is a safe bet financially but usually means giving up total control. Taking venture capital funding also might mean that the researchers would give up more control of a battery spinoff than they would have to with other private sources of capital.

At stake in the decision is whether the plastic battery ever sees its way out of the lab and emerges as a practical device. Commercializing new types of batteries is a notoriously expensive process, requiring new manufacturing plants and a long-term commitment to a particular type of technology. Once a corporation licenses a technology, they largely gain control over its fate-including the choice to kill its development. Choose the wrong partner and the battery-once the darling of 30-second TV sound bites-can be quickly relegated to a corporation’s pile of “better batteries” that never panned out.

On the other hand, the right business maneuvering could provide a lucrative payday to Searson and Poehler, as well as to a handful of their lab co-workers. Like most researchers who discover something with commercial potential, Searson, Poehler and their colleagues were careful to file a patent before they publicly released any of the findings. The university owns the patent, but profits or license fees are split so that one-third goes to the university, one-third to the researchers and one-third to the lab for its future research. If the numbers involved become very large, the researchers’ personal share declines to roughly 15 percent.

For the moment, however, the Johns Hopkins plastic battery seems to be hung up on a catch-22 that frequently plagues labs looking to market technology in early development; the project needs more funding to reach the next stage of development but the financial backers want to see more highly developed technology before they will loosen the purse strings.

What’s more, while the venture capital market continues to boom and is a ready source of dollars for startups in information technology and biotech, venture investment in new materials remains a sluggish-often neglected-sector. “Wall Street doesn’t like materials stories,” says Joe Lovett, a general partner of Medical Science Partners, a venture capital firm in Wellesley, Mass., which finances both biotech and materials science startups.

Josh Lerner, an associate professor at Harvard Business School and expert on venture capital, says, “Materials science had a brief surge of popularity in the late 1980s with high-temperature superconductivity. But people seem to have become disillusioned with the area.” Lerner says that even with the boom in venture investment, “there is still a very narrow band of technologies that are funded; 80 to 85 percent of the companies are in information technology and the life sciences.”

Beyond such funding obstacles, the plastic battery faces tough competition from several other promising types of batteries, including zinc-air batteries and lithium batteries. Each of those technologies has hundreds of millions of dollars of investment and a critical headstart. Some have already been manufactured on a large scale. Like the plastic battery, they’re efficient, lightweight and compact. Lithium-polymer batteries, for one, can be molded into almost any shape, even cut into pieces without losing their charge.

So what are the odds that one day we’ll find ourselves riding in cars with parts lined with plastic batteries, talking on cell phones powered by the stuff? It is still too early to tell. If Poehler had his choice, “one of the world’s biggest battery companies would say, We’re going to take this and make it and give you a great deal, and you can still do your own work to improve the technology,’” or a financial backer would come and give them “a whole lot of money to start up a company.”

But the Johns Hopkins scientists know it’s not that easy. So every morning Poehler and Searson continue to look for the signed agreement that might bring us closer to a plastic battery reality. Despite all of the research breakthroughs, the media hype and promising meetings, it’s still a dream trying to make the big leap into the commercial world.

0 comments about this story. Start the discussion »

Tagged: Computing, Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me