Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

According to James Robl, a biologist at the University of Massachusetts who recently saw presentations from several ES research groups at a meeting in Australia, “The cells that I have seen don’t look pretty, and they don’t look like ES cells. But we’ll just have to wait and see.” Gearhart,

But the ultimate test of an ES cell’s power, says Gearhart, “won’t be done.” As in mice, that ultimate proof involves implanting human ES cells in a developing embryo, producing a germ-line chimera: a person that could pass the traits of the implanted ES cell to its own offspring. Deprived of this ultimate assay, which lies far outside the bounds of what’s ethical or even feasible, it will be impossible to meet the strictest definition of an ES cell. But, when Gearhart looks at the composite picture provided by the other tests, he says, “We’re convinced.”

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me